
 
 1 

 

 
 
 
 
 

Annex A: 
Methodology 

 
 
 
How National  Appliance & Equipment Energy Conservation Standards Can Help Improve 
Public Health and Advance Justice40 Init iat ive Goals 
11  MARCH 2024 



 
 

2 

 
 
A U T H O R S   

Lauren Boucher, CLASP 
C O N T R I B U T O R S   

Dr. Kelsey Bilsback, PSE Healthy 
Energy 

Jeremy Domen, PSE Healthy 
Energy  
C O N T A C T  

info@clasp.ngo 

 
C I T A T I O N  A N D  C O P Y R I G H T  

Lauren Boucher, How National Appliance and Equipment Energy 
Conservation Standards Can Help Improve Public Health and Advance 
Justice40 Initiative Goals, CLASP, March 2024, 
https://www.clasp.ngo/research/all/how-national-appliance-and-
equipment-energy-conservation-standards-can-improve-public-health-
and-advance-justice40-initiative-goals/ 
 

© CLASP 2024 
 
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy 
of this license, visit https://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 
1866, Mountain View, CA 94042, USA.  
 
CLASP makes no representations or warranties implied. The work presented in this report represents our best efforts 
and judgements based on the information available at the time this report was prepared. CLASP is not responsible 
for the reader’s use of, or reliance upon the report, nor any decisions based on this report. Readers of the report are 
advised that they assume all liabilities incurred by them, or third parties, as a result of their reliance on the report, or 
the data, information, findings and opinions contained in the report.  

A B O U T  

This document describes the methodology used to estimate the impact national appliance and equipment 
standards adopted over a 30-year period in the United States have had on PM2.5-related mortality. The 
findings of this analysis are presented in the issue brief, How National Appliance and Equipment Energy 
Conservation Standards Can Help Improve Public Health and Advance Justice40 Initiative Goals. 

A C K N O W L E D G E M E N T S  

We would like to gratefully acknowledge the following individuals for their insights, guidance, and technical 
support in the development and/or review and execution of this project: Aimee Bell-Pasht, Lowell Ungar 
(ACEEE), Andrew deLaski, Joanna Mauer, and Madeline Parker (ASAP), Matt Malinowski, Ari Reeves, Alexia 
Ross, and Corinne Schneider (CLASP); Joe Vukovich and Jackie Wong (NRDC). We would also like to thank 
the following people for their thoughtful review, guidance, and feedback on this report: Eric Ruben and 
Nancy Metayer (Energy Solutions); Berneta Hayes (National Consumer Law Center); Mikyla Reta, Sabrina 
Johnson, Batoul Al-Sadi, and Olivia. Walker (Natural Resources Defense Council); Anilla Cherian (NYSERDA); 
Talor Gruenwald (Rewiring America); Veronica Jackson and Anjuli Jain Figueroa (U.S. Department of 
Energy).

  

T R A N S P A R E N C Y  S E R V I C E  

I M P A C T  C O L L A B O R A T I O N  

mailto:info@clasp.ngo
https://www.clasp.ngo/?post_type=research&p=11501&preview=true
https://www.clasp.ngo/?post_type=research&p=11501&preview=true


 
 

3 

1. Modeling Health Impacts 
1.1 INMAP BACKGROUND 

We used InMAP1 version 1.9.0 to estimate the impact of residential emissions on PM2.5 and PM2.5-
related mortality.  InMAP has been peer-reviewed and is widely used in the scientific literature to 
estimate air quality and health impacts in the contiguous US (excluding Alaska and Hawaii).2,3,4 

InMAP is a marginal change model, meaning it is designed to be used to evaluate the impacts of 
changes in atmospheric PM2.5 concentrations rather than the total atmospheric concentrations. 
InMAP estimates the marginal changes in annual average outdoor PM2.5 using information about 
emissions and a series of scientific calculations. These calculations account for the evolution of 
emissions in the atmosphere–including atmospheric transport, chemistry, and deposition. InMAP 
can also be configured to use epidemiological relationships to estimate PM2.5-related health 
impacts, e.g., mortality. InMAP includes both the air quality impacts of PM2.5 and the impacts of 
PM2.5 precursors—NOx, SOx, NH3, and VOCs—which are emitted directly and then react chemically 
in the atmosphere to form PM2.5. 

 
InMAP provides greater spatial granularity (up to 1 km grid) than other reduced-form models, 
which typically provide information at the county level.5 InMAP includes racial demographic 
information, which enables the user to assess which demographic groups may see the greatest 
health impacts or benefits from the modeled emissions scenario. 
 
1.2 INMAP INPUTS 

InMAP was driven by a series of input data that are described in detail below. As a supplement to 
this document, we have provided all InMAP input and output files. 
 
Emissions Scenarios: We ran eight InMAP model runs that are detailed in Table 1. For our InMAP 
model runs, we used two distinct emissions scenarios: 
 

1. Actual: 2017 emissions attributed to appliances and equipment (residential fossil fuel 
appliances and electric appliances). 

2. Counterfactual: 2017 emissions from appliances and equipment in the absence of 
appliance energy efficiency standards. 
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Table 1. Summary of InMAP model runs. 

Scenario Emissions Spatial Allocation Concentration-Response Function 

Actual Power sector Census Tracts Lepeule et al., 2012 

InMAP Grid Krewski et al., 2009 

Appliances Census Tracts Lepeule et al., 2012 

InMAP Grid Krewski et al., 2009 

Counterfactual Power sector Census Tracts Lepeule et al., 2012 

InMAP Grid Krewski et al., 2009 

Appliances Census Tracts Lepeule et al., 2012 

InMAP Grid Krewski et al., 2009 

 
The emissions from the “actual” scenario are from the National Emissions Inventory (NEI) for the 
year 2017.6 To construct the counterfactual scenario, CLASP used state-level energy savings 
estimates provided by the Appliance Standards Awareness Program (ASAP) for the year 2017 
based on standards adopted over a 30-year period to estimate the percentage increase in 
electricity demand in 2017 if those standards had not been adopted. To meet this additional 
demand, new power plants would likely be needed and/or older power plants would prolong 
retirement. Rather than model the changes in installed capacity needed to support this additional 
demand, we uniformly scaled 2017 NEI emissions data proportionate to the estimated increase in 
electricity demand based on the energy savings estimated provided by ASAP. This choice may 
have resulted in an overestimation in emissions from baseload electricity generation and an 
underestimation from peaking electricity generation. Additionally, this decision assumes that the 
emissions in the counterfactual scenario follow the same geographic distribution as they do in the 
actual scenario and does not consider the location of new facilities that would be needed to meet 
the added demand. We applied a similar approach when estimating emissions in the 
counterfactual scenario for residential fossil fuel appliances. The emissions estimates in the 
counterfactual scenario reflect the emissions factors the NEI used to estimate residential 
emissions in 2017. These emissions factors are more conservative than what one could expect in a 
scenario without standards. 
 
 Both scenarios included two shapefiles that provided emissions data in short tons per year. The 
first shapefile for each scenario contained elevated power-sector emissions data that were 
attributable to the residential sector (elevated_emissions.shp and 
elevated_emissions_counterfactual.shp) and the second shapefile contained ground-level 
emissions data from residential appliances allocated to U.S. census tracts (emis_res_gas_2017.shp 
and emis_res_gas_2017_counterfactual.shp). For the actual and counterfactual scenarios, we ran 
two InMAP simulations to capture the impacts of the power sector and residential appliances 
separately. The files included “NA” values for some emissions, which were introduced when the 
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emissions files were created in R. To run InMAP, any “NA” emissions values were replaced with 
zeros. 
 
Health Impact Function: The equation used to calculate the PM2.5-related mortality from emissions 
that are attributable to the residential sector is given below:  
 

ΔMortality = Pop(expβᐧΔX - 1)Y0 
 
In this equation, the change in mortality is calculated using the population (Pop), the baseline 
mortality rate (Y0), and the concentration-response function, which includes the change in 
concentration of annual-average PM2.5 (ΔX) and a beta coefficient (β). β is determined using 
relative risk (RR) associated with a 10 μg m-3 increase in annual-average outdoor PM2.5. β has the 
following functional form: 
 

β = ln(RR) / 10 μg m-3 
 
where the RR estimate is derived from the epidemiological literature. We used the two RR 
estimates (Table 1) that are also used in the U.S. Environmental Protection Agency’s Co-Benefits 
Risk Assessment Health Impacts Screening and Mapping Tool.7 The first RR estimate was from 
Krewski et al.,8 which had a coefficient of 1.06. The second RR estimate was from Leupeule et al.,9 
which had a coefficient of 1.14. Given the uncertainty in the concentration-response function,10 we 
used these two calculations to represent a “low” and “high” estimate, respectively, providing an 
estimated mortality rate range. 
 
Demographic Data: Our InMAP model runs used baseline all-cause mortality rates for the entire 
U.S. population from the Centers for Disease Control and Prevention for the year 2013.11 The 
mortality rates were for all genders and age groups at the county level. We also used census-
block-group level population, race, and ethnicity data from the 2015 American Community Survey, 
which covers a five-year span from 2011-2015. The demographic data shapefile included several 
census block groups with invalid geometries that were fixed using the “fix geometries” function in 
QGIS. While we expect there to be some changes in baseline mortality and population between 
the time the demographic data was collected (2013 and 2015, respectively) and the year that was 
used for emissions estimates (2017), this discrepancy likely has a much smaller impact on our 
PM2.5-related mortality calculation compared to the uncertainty in the calculations used by InMAP 
to estimate PM2.5 and the uncertainty in the concentration-response function.12 
 
Monetary Impacts: We calculated the monetary value of the mortality impacts by multiplying the 
mortalities estimates calculated using InMAP by the value of a statistical life for a 2017 income 
level. We estimated the 2017 income level dollar amount by linearly interpolating the 3% discount 
rate values used for the years 2016, 2023, and 2028 used in the U.S. Environmental Protection 
Agency’s Co-Benefits Risk Assessment Health Impacts Screening and Mapping Tool. We used a 
value of approximately $9.5 million in 2017 dollars. 
 
1.3 INMAP OUTPUTS 

InMAP Output Files: Our InMAP runs produced eight output shapefiles, four for the “actual” and 
four for the “counterfactual” scenarios, respectively (Table 1). The outputs from InMAP are 
provided on a variable rectangular grid, which is optimized to focus computational resources 
toward understanding exposures and health impacts. Thus, grid cells tend to be larger in rural and 
remote areas and smaller in densely populated regions. The size of the horizontal grid depends on 
the local population density and pollutant concentrations.13 Output variables from InMAP include 
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the annual-average outdoor PM2.5 concentration attributable to the residential sector and PM2.5-
related mortalities. 
 
1.4 LIMITATIONS OF INMAP 

InMAP is a reduced-form model, meaning that it uses simplified calculations to estimate 
atmospheric PM2.5 concentrations, compared to state-of-the-science chemical-transport models 
that model the atmospheric processes more explicitly. Recent studies have demonstrated that 
reduced-form models, including InMAP, provide significant computational advantages with only a 
minor loss in fidelity.14 Given that InMAP is a reduced-form model, we also note that the PM2.5 
concentrations modeled by InMAP represent the marginal impacts of emissions rather than the 
absolute impacts, meaning that InMAP outputs cannot be compared directly to the National 
Ambient Air Quality Standards (NAAQS) or ambient air quality monitors.  
 
The health impacts calculated with InMAP likely underestimate the total health impacts of 
emissions from the residential sector in the US. InMAP is limited to quantifying the health impacts 
of sources that emit PM2.5 and PM2.5 precursors and does not include the impacts of a range of 
other air pollutants. For example, InMAP does not include the direct impacts of VOCs, many of 
which are identified as hazardous air pollutants (HAPs) by the US EPA. InMAP also does not 
capture the health impacts of ozone, which is the second leading source of air pollution-related 
health impacts, after PM2.5.15,16 Further, previous studies have found that residential gas stoves are a 
source of both VOCs (including HAPs)17 and NOx,18 which have direct health impacts and may react 
in the atmosphere to form ozone.  
 
Despite emissions consistently being lower in the “actual” case as compared to the 
“counterfactual” case, mortality is not always lower for all areas in the “actual” case. Part of the 
discrepancy is due to differences in the InMAP output grid resolution (i.e., grid density or the 
number of rectangular grid subdivisions) between scenarios. The spatial resolution of the InMAP 
grid can significantly impact model-estimated population-weighted exposure,19 as emissions and 
population tend to be spatially correlated. Lower total mortality in the counterfactual scenario can 
occur in areas where the spatial resolution of the InMAP grid differs between the actual and 
counterfactual scenarios. 
 

2. Interpolated Modeled Outcomes 
2.1 INTERPOLATION BACKGROUND 

After running InMAP, we mapped the outputs from the InMAP grid to U.S. census tracts to support 
the further elucidation of the impacts of emissions from residential appliances and the emissions 
stemming from power generation for residential appliances on disadvantaged communities, as 
defined by the Justice40 initiative.20 We used the two concentration-response functions (Table 1) 
to demonstrate uncertainty in mortality estimates, but we conducted the spatial allocation for the 
simulations that used the Lepeule et al.21 concentration-response function only. We distributed the 
changes in PM2.5 concentrations and PM2.5-related mortalities due to emissions from appliances 
and the power sector by census tract weighting by population. Below, we describe the inputs and 
methods used in our gridding process.  
 
2.2 INTERPOLATION INPUTS 
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InMAP Outputs: Our interpolation used the output files from InMAP: emis_actual_pp_high.shp, 
emis_actual_res_high.shp, emis_counterfactual_pp_high.shp, 
and  emis_counterfactual_res_high.shp for the “actual” and “counterfactual” scenarios for the 
power sector (pp) and appliances (res), respectively. 
 
Demographic Data: Our interpolation required population data aggregated by race or ethnicity and 
census subdivisions. For consistency, we relied on the same census block group demographic 
data for both the InMAP model runs and for the interpolation of outdoor PM2.5 concentrations and 
PM2.5-related mortality. (See “Demographic Data” under Section 1.2 for details.) Using 
demographic data on the block-group level provides additional accuracy when interpolating 
values as it more accurately reflects population distribution compared to census-tract level data. 
 
2.3 POPULATION-WEIGHTING METHODS 

Population-Weighted PM2.5-Related Mortality: We allocated the estimated PM2.5-related mortality 
by race and ethnicity to the US census tracts. We did this by weighting the total and race-and-
ethnicity-specific mortality outputs from InMAP by the total and race-and-ethnicity-specific 
census-block-group population data. We weighted the mortality outcomes using population data 
rather than mortality data because race and ethnicity-specific population data are available readily 
at a higher spatial resolution (census-block-group level rather than county-level), which allowed 
us to better capture small-scale differences in race and ethnicity. 
 
We used both QGIS and R to allocate PM2.5-related mortality. Shapefiles were reprojected to the 
same coordinate reference system (CRS) and the intersection between InMAP grids and census-
block groups were calculated using the “intersection (multiple)” and “add geometries” functions in 
QGIS. The resulting shapefile contained census block groups split along InMAP grid boundaries. 
We used R to calculate the percentage of each census block-group that was within each InMAP 
grid and the associated population each census block-group fraction contributed to the total and 
race-and-ethnicity-specific InMAP grid population. This method assumes that the population 
distribution within a census block group is uniform. Using population data on the census block 
group level for the population weighting allows for greater accuracy when allocating mortality and 
monetary impacts, compared to census tract level data.  
 
Total and race- and-ethnicity-specific InMAP mortality was then allocated to each census block-
group fraction based on population, and the overall total and race- and-ethnicity-specific mortality 
were summed for each census block-group. The resulting shapefile was joined with the census-
block-group shapefile using the GISJOIN column and scrutinized in QGIS. We then summed PM2.5-
related mortality on the census-tract level and merged census block-group geometries into tracts 
using the GISJOIN column in R and QGIS.  
 
We calculated the monetary value of the mortality impacts by multiplying the allocated mortality 
estimates by the value of a statistical life for a 2017 income level as described in Section 1.2. 
 
We produced four files through our interpolation analysis:  

• emis_actual_pp_high_allocated_census_tract.shp: for the “actual” scenario with power 
sector emissions, 

• emis_actual_res_high_allocated_census_tract.shp: for the “actual” scenario with 
residential appliance emissions, 

• emis_counterfactual_pp_high_allocated_census_tract.shp: for the “counterfactual” 
scenario with power sector emissions, and 
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• emis_counterfactual_res_high_allocated_census_tract.shp: for the “counterfactual” 
scenario with residential appliance emissions.  

 
Because InMAP only outputs PM2.5-related mortality in populated regions within the contiguous 
U.S., we can check for PM2.5-related mortality conservation between the InMAP output and the 
interpolated mortality. For the actual and counterfactual cases for the power sector and appliance 
scenarios, allocated total and race-and-ethnicity-specific mortality were conserved. As discussed 
in Section 1.4, there are a few census tracts where the “actual” case had higher mortality 
compared to the “counterfactual” case, partially due to differences in the InMAP output grid 
resolution (i.e., grid density or the number of rectangular grid subdivisions) between scenarios. 
 
Population-Weighted PM2.5: To allocate the PM2.5 air concentrations to the census-tract level, we 
weighted the PM2.5 concentration outputs from InMAP by the total population, following the same 
approach that we did for PM2.5-related mortality. We chose a population-weighting approach for 
PM2.5 over an area-weighing approach because the population-weighting approach is commonly 
used by entities, such as the World Health Organization, as an indicator for exposure.22 We note 
that because InMAP is a marginal air quality model, these outdoor PM2.5 concentrations represent 
only the PM2.5 attributable to the residential sector (rather than the absolute concentration of PM2.5 
in the atmosphere). The results of the population-weighted PM2.5 allocation are included in the 
output files of the population-weighted PM2.5-related mortality allocation. We note that, unlike 
PM2.5-related mortality, InMAP does output PM2.5 air concentrations over unpopulated 
regions, bodies of water, and regions outside of census shapefiles (e.g., nearby parts of Canada 
and Mexico). Therefore, we cannot check the overall conservation of total PM2.5. However, we 
expect the accuracy of the allocated results to be similar to those for population-weighted PM2.5-
related mortality. 
 

3. Defining Disadvantaged Communities 
To add the current Justice40 community designations to the  files produced during our 
interpolation analysis,1 we used Version 1.0 of the Climate and Economic Justice Screening Tool’s 
Communities list data to merge the interpolated results with Justice40 disadvantaged community 
designations by census tract.23 We used the variable titled, “Identified as disadvantaged” to 
indicate whether a census tract would be counted as a disadvantaged community. 
 

4. Quantifying Health Benefits 
Our analysis explored the impact of national appliance and equipment standards on PM2.5 related 
benefits. To assess this health benefit, we took the difference in modeled PM2.5-related mortality 
between the actual and counterfactual scenarios for each census tract. We then summed the 
difference for each census tract to determine the total number of premature PM2.5-related deaths 
national appliance and equipment standards prevented in 2017. 
 
To assess how the avoided PM2.5-related deaths were distributed across Justice40 disadvantaged 
communities, we summed the difference in PM2.5 mortality in each scenario for all census tracts 
 
 
 
1 emis_actual_pp_high_allocated_census_tract.shp, emis_actual_res_high_allocated_census_tract.shp, emis_counterfactual_pp_high_allocated_census_tract.shp, and 
emis_counterfactual_res_high_allocated_census_tract.shp 
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identified as disadvantaged by Version 1.0 of the Climate and Economic Justice Screening Tool’s 
Communities data list to find the total number of avoided PM2.5-related deaths attributed to 
national appliance standards. We then took the sum of all avoided PM2.5-related deaths and 
divided that by the sum of all PM2.5-related deaths to find the proportion of avoided PM2.5-related 
deaths observed in Justice40 disadvantaged communities. 
 
InMAP enables users to model PM2.5-related mortality among different racial and ethnic groups. To 
assess how the avoided PM2.5-related deaths were distributed, we used the preexisting baseline 
mortality data within input to estimate the PM2.5-related deaths across five different demographic 
groups: White, non-Latino adults; Black adults, non-white Latino adults, Native American adults, 
and Asian adults. We then summed the difference of PM2.5-related deaths in the two scenarios for 
each of those five demographic groups. To estimate the distribution of health benefits we took the 
sum of all avoided PM2.5-related deaths for each groups and divided that by the sum of all PM2.5-
related deaths to find the proportion of avoided PM2.5-related deaths observed in different racial 
and ethnic groups in the United States.2 
 
  

 
 
 
2 2017 population data were sourced from the U.S. Census Bureau’s American Community Survey’s Five-Year Data for the years 2013-2017. 

https://www.census.gov/data/developers/data-sets/acs-5year.2017.html#list-tab-1806015614
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