Regulating Horizontal Refrigerated Units June 2022

Workshop at AVARI- Lahore

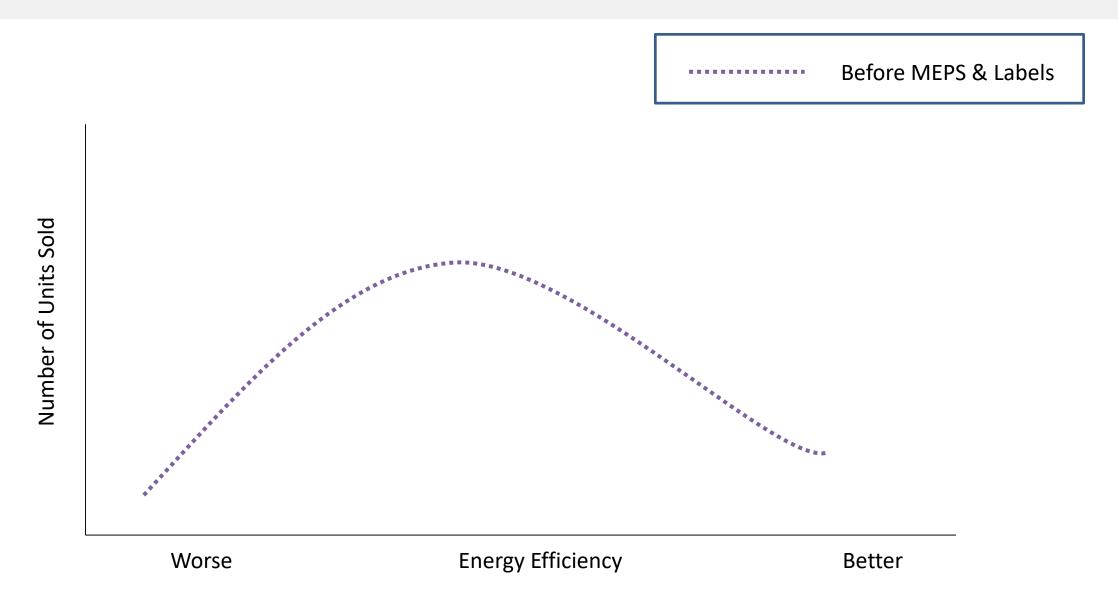
Why standards and labelling, and why "add" more refrigerated products to regulations?

Stuart Jeffcott

A brief introduction to the benefits of Standards and Labels

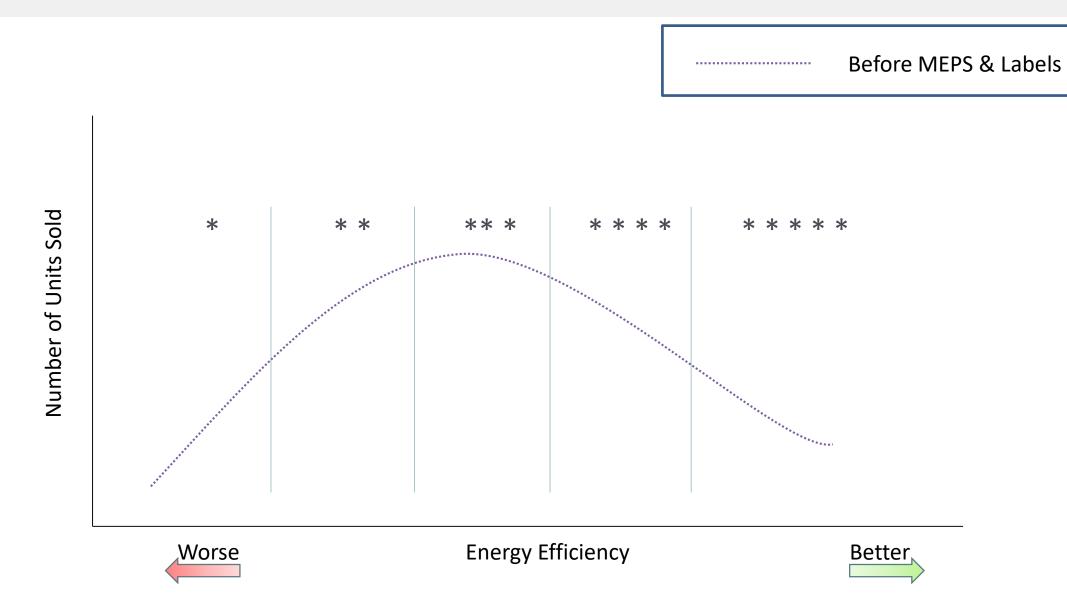
"Definition" of MEPS and Labelling

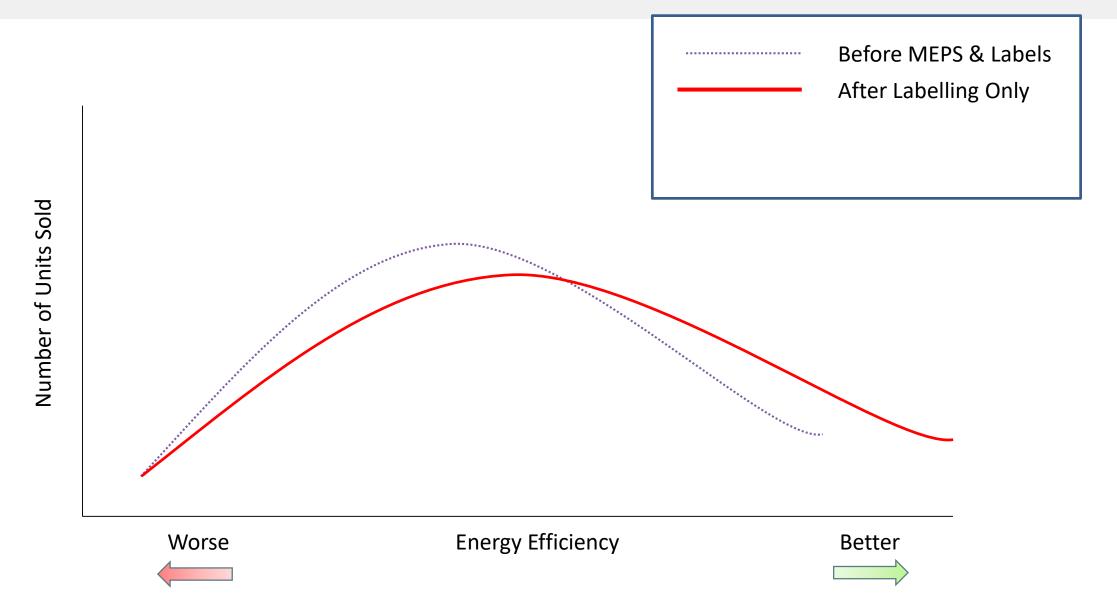
Minimum Energy Performance Standards (MEPS)

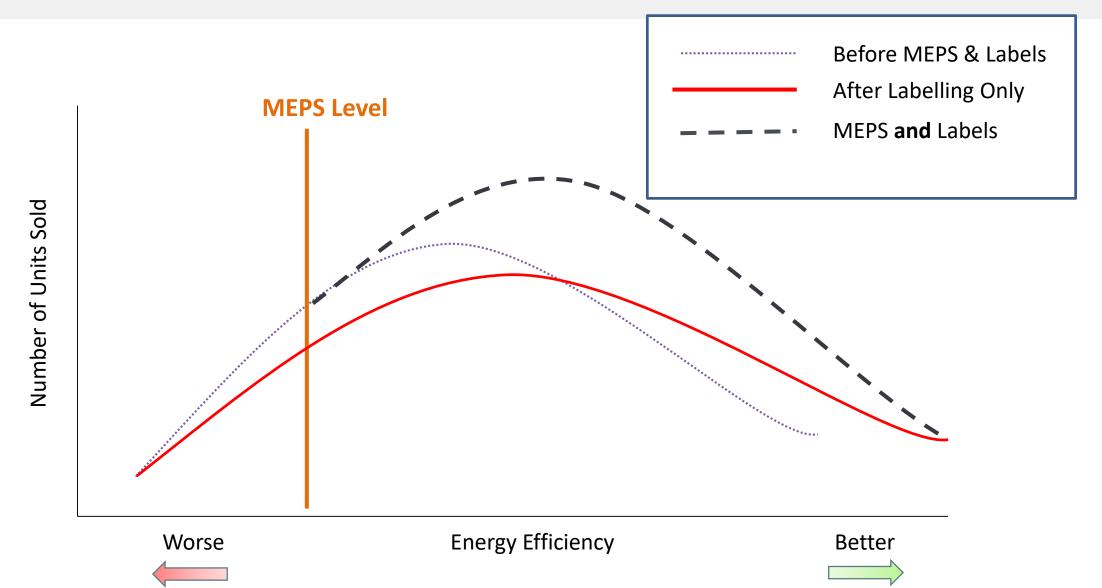

 Removal from the market of products that are deemed to have unacceptably low energy performance.

Labelling

- To categorise the energy performance of products to enable differentiation of the "better" products from the "less good" products.
 - Consumers get more transparency for decision making
 - Allows effective implementation of other policy (eg procurement)


Distribution of Performance of Products in Market


Effect of Labelling: Transparently "Grading" Product Performance clasp


Effect of MEPS and Labelling

Effect of MEPS and Labelling

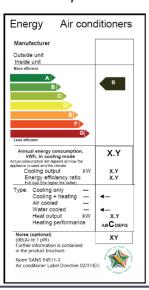
MEPS and Labelling around the world (2014)

	Minimum Standards	Comparative Labels
Europe	939	652
Asia Pacific	243	228
North America	92	44
Central America	43	88
Middle East	79	78
Africa	57	59
Total	15453	1149

2009 - 60 countries with performance requirements for refrigerators.

Currently ~ 75 countries

1,900+


Label Examples

Australia

Europe

China

Korea

Standards and Labelling in Pakistan

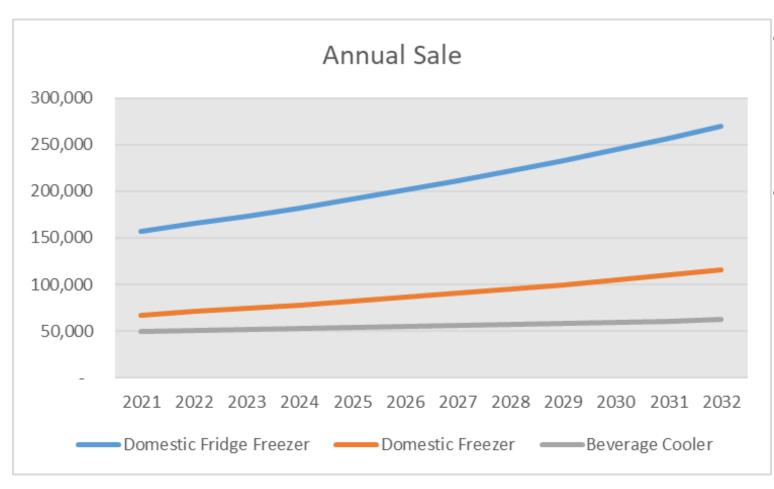
Currently Voluntary for Fans

Soon to be Mandatory

- Fans
- Air Conditioners
- Refrigerators (side-by-side FF)
- LED Lights
- Electric Motors
- Water Heaters
- Commercial Refrigeration

Market Summary

Sales, Stock & Lifetime



Approximately **300,000** horizontal chest cooling cabinets are manufactured each year in Pakistan.

- Domestic Use ~ 225k (160k Horizontal Fridge/Freezer, 65k Horizontal Freezer)
- Beverage Coolers 50k
- Ice Cream 20k
- Food and others 5k

Sales

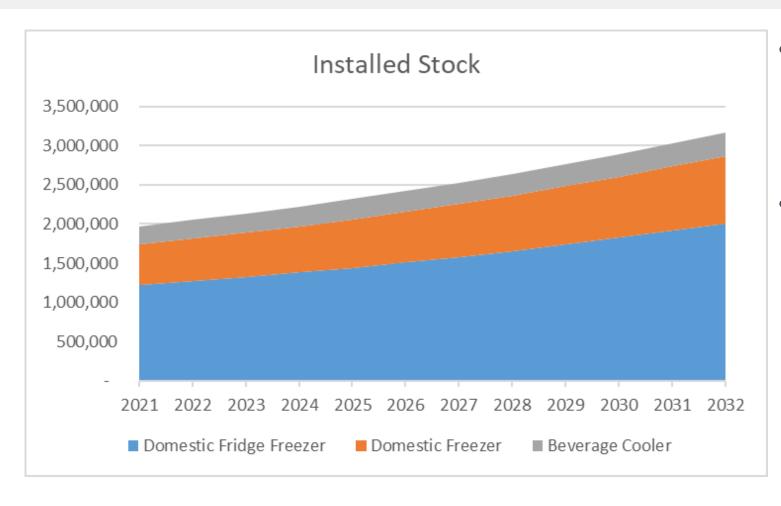
Average annual Sales

• Fridge/Freezer: 160k

• Freezer: 65k

• Beverage Cooler: 50k

Annual Growth rate


• Fridge/Freezer: 5%

• Freezer: 5%

• Beverage Cooler: 2%

Stock

Installed Stock 2021

• Fridge/Freezer: 1.3m

• Freezer: 0.55m

• Beverage Cooler: 0.22m

• Life time

• Freezer: 9 year

• Beverage: 4-5 Year

Supply and Demand Sides of the market

Type	Supply Side	Demand Side
Horizontal (side-by-side) Fridge-Freezers	Waves, Dawlance, Haier, PEL	Domestic Users
Horizontal Freezers	Waves, Dawlance, Haier, PEL	Domestic Users Shop keepers
Horizontal Beverage Coolers	Waves, Varioline	Beverage Companies

Scope

Primary standalone refrigerated appliances in Pakistan

Domestic

- Upright refrigerators (with and without ice box)
- Upright (refrigerator above freezer) fridge-freezers
- Upright (side-by-side) fridge-freezers
- Horizontal (side-by-side) fridge-freezers
- Horizontal Freezers

- Open-fronted display (horizontal and vertical)
- Vertical beverage (vizis)
- Horizontal beverage
- Frozen food/other
- Icecream

Current (and expected) future sales justifying regulation

Domestic

- Upright refrigerators (with and without ice box)
- Upright (refrigerator above freezer) fridge-freezers
- Upright (side-by-side) fridge-freezers
- Horizontal (side-by-side) fridge-freezers
- Horizontal Freezers

- Open-fronted display (horizontal and vertical)
- Vertical beverage (vizis)
- Horizontal beverage
- Frozen food/other
- Icecream

MEPS and labelling regulation already drafted

Domestic

- Upright refrigerators (with and without ice box)
- Upright (refrigerator above freezer) fridge-freezers (JICA 2020)
- Upright (side-by-side) fridge-freezers
- Horizontal (side-by-side) fridge-freezers
- Horizontal Freezers

- Open-fronted display (horizontal and vertical)
- Vertical beverage (vizis) CLASP (2021/2)
- Horizontal beverage
- Frozen food/other
- Icecream

Outstanding refrigerated products requiring regulation

Domestic

- Upright refrigerators (with and without ice box)
- Upright (refrigerator above freezer) fridge-freezers (JICA 2020)
- Upright (side-by-side) fridge-freezers
- Horizontal (side-by-side) fridge-freezers
- Horizontal Freezers

- Open-fronted display (horizontal and vertical)
- Vertical beverage (vizis) CLASP (2021/2)
- Horizontal beverage
- Frozen food/other
- Icecream

Thank you

Questions?

Testing Standards for horizontal refrigerated cabinets

Abdul Rehman

Testing Standards: Domestic horizontal freezers and fridge-freezers

Domestic Refrigeration Testing "Options"

Traditionally a significant number of domestic refrigerator test methods used internationally in regulations (20+ in 2005). Variations in:

- Ambient temperatures: 20°C, 25°C, 30°C, 32°C, 35°C, 40°C, ...
- Compartment temperatures: Varied by mandatory and cultural requirements
- Loading: Empty, test package, warm loaded of varying sizes,...
- Door openings: Never, once per hour, once per 24 hours,

More recent migration to a single, internationally recognised suite of standards: IEC62552-x

- Method provides routes to test *all* types of domestic refrigerators and/or freezers at ambient and compartment temperatures to suit local conditions.
- Method adopted by PSQCA (PS IEC62552-x), and used by JICA in proposals for regulation of upright refrigerator-freezers.

Domestic Refrigeration: Testing proposal

To allow alignment with international trend, AND allow direct relationship with developed JICA fridge-freezer regulations, adopt the PS IEC62552-x suite of standards for the regulation of chest fridge-freezer combination and freezer only units.

Primary testing requirements:

- Stable state test
- Ambient temperature: 32°C aligns with JICA requirement
- Compartment temperatures: As declared by manufacturer (this will be a regulatory requirement)
- Minimum test period: 24 hours (varies depending on defrost cycle)
- Door openings: None for energy test, one plus load addition for "load processing" tests
- Careful volume measurement required

Testing Standards: Horizontal beverage coolers

Horizontal Beverage Coolers: Testing proposal

Already agreed use of ISO 22044 for Visi's (pending adoption by PSQCA).

Scope of test method includes both vertical AND horizontal beverage cabinets:

Logical extension to use in horizontal regulation

Primary testing requirements:

- Ambient temperature: 32°C (CC2)
- Stable state test (M-can loaded), door closed, average M-can temperature 3.5°C (K1)
 - Max M-can: 7°C, Min M-can: 0°C, Tolerance: 0.5°C
 - Adjustments for Energy Management Devices
- Half reload of warm cans, must recover <20 hrs at 32°C ambient)

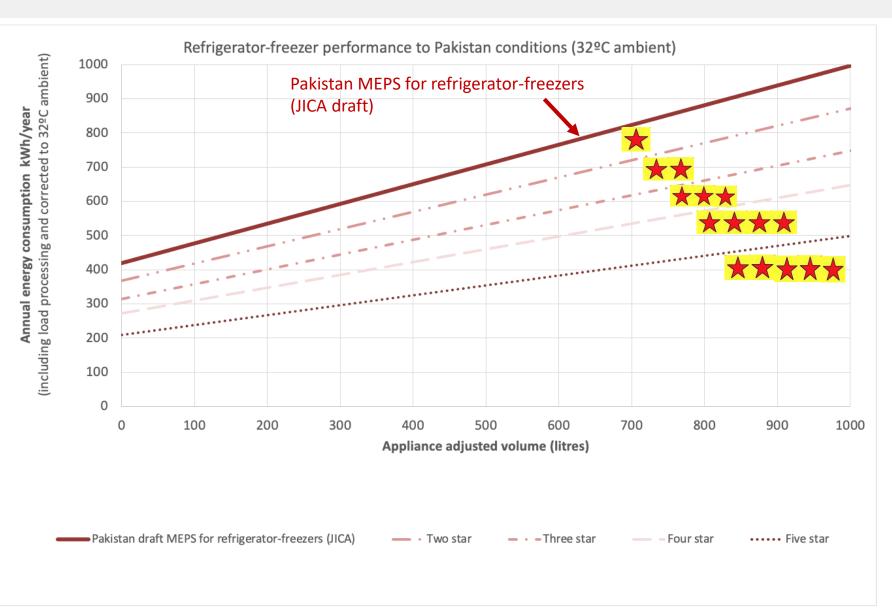
Proposed performance requirements

M. Salman Zaffar

A few words about horizontal cabinets (all types)

Basis of the proposals:

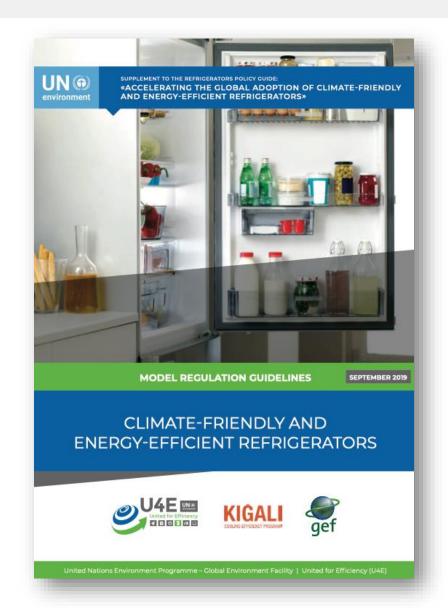
- 1. Horizontal ('chest' format) cabinets perform the same cooling function as their vertical equivalent, but have a different format / shape.
- 2. To give fair information to consumers / buyers, the energy label grades should be directly comparable between horizontal cabinets and vertical cabinets.
- 3. This means that they should share:
 - The same energy efficiency test method
 - The same energy label thresholds
 - Directly comparable annual energy consumption


Horizontal Refrigerator – Freezers

MEPS and labels for horizontal refrigerator-freezers

NEECA / JICA draft regulation for refrigerator freezers:

Excludes "French door / Side by side door"



MEPS and labels for horizontal freezers

The Pakistan MEPS level for refrigerator-freezers was derived from the UNEP United for Efficiency recommendations, to make the JICA draft.

The Pakistan MEPS level for Fridge Freezers and **freezers** could be derived in the same way.

MEPS and labels for horizontal Fridge Freezers

United for Efficiency (U4E) recommendations:

The JICA MEPS for refrigeratorfreezers allow twice the annual energy consumption of the MEPS proposed in U4E.

There is a reason for this....

Table 4. Maximum Annual Energy Consumption (AEC_{Max}) for Optional Reference Temperatures

Reference Temperature	Product Category	AEC _{Max} (kWh/year)
20°C	Refrigerators	0.134×AV+84
	Refrigerator-Freezers	0.188×AV+137
	Freezers	0.175×AV+161
32°C	Refrigerators	0.220×AV+137
	Refrigerator-Freezers	0.288×AV+210
	Freezers	0.268×AV+247

JICA draft requirements for Pakistan:

MEPS cut-off level = 0.576×Vadj + 420

How ambitious are the U4E requirements?

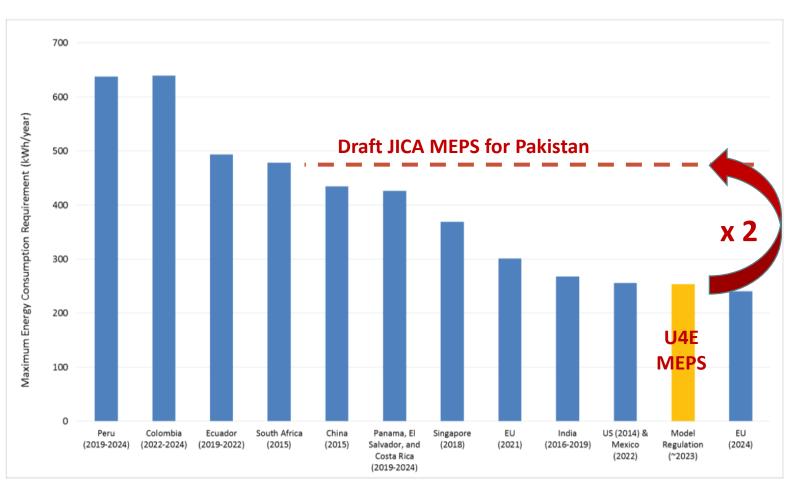
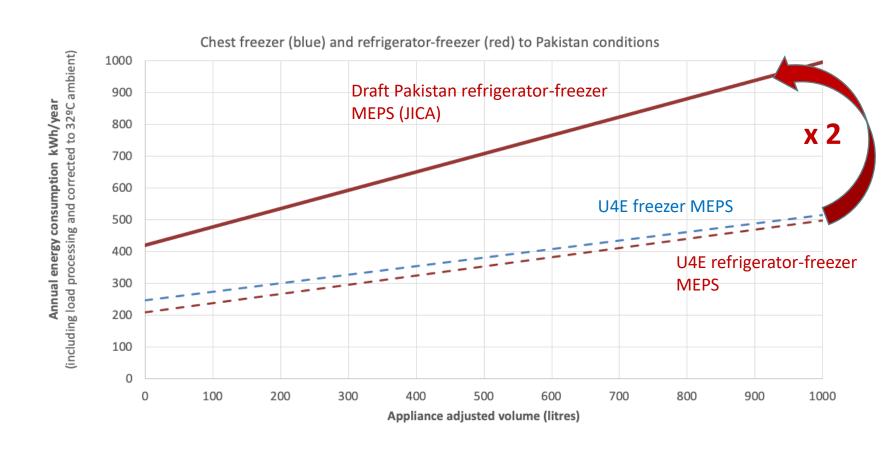


Figure 3: Comparison of maximum energy use requirements for refrigerator-freezers (25°C)

Source: Lawrence Berkeley National Laboratory [LBNL] analysis

The **U4E** MEPS for refrigerator-freezers are:

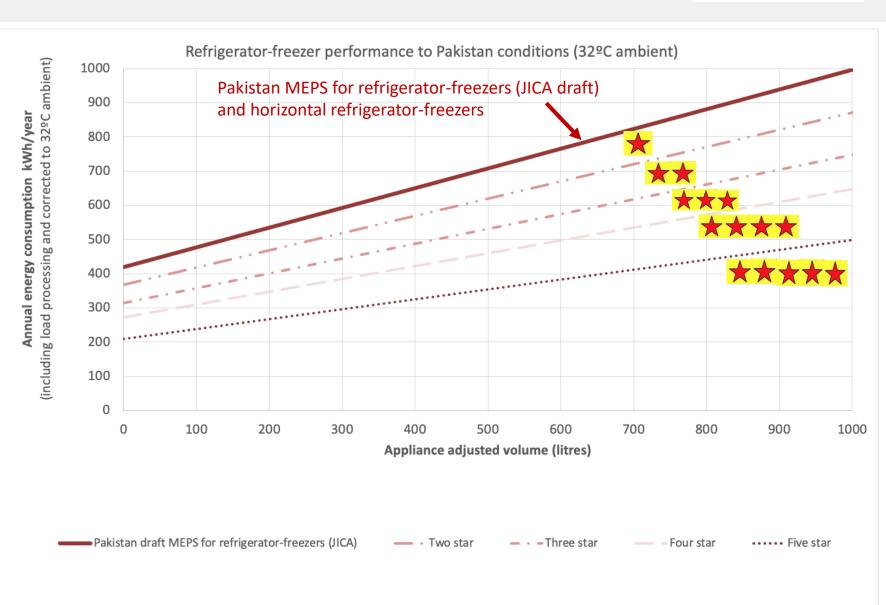
 Close to the future EU MEPS in 2024.


The **draft JICA (Pakistan)** MEPS for refrigerator-freezers are:

- Close to the 2015 MEPS in South Africa
- 10% less ambitious than those for China in 2015

MEPS for horizontal freezers - transposed from U4E

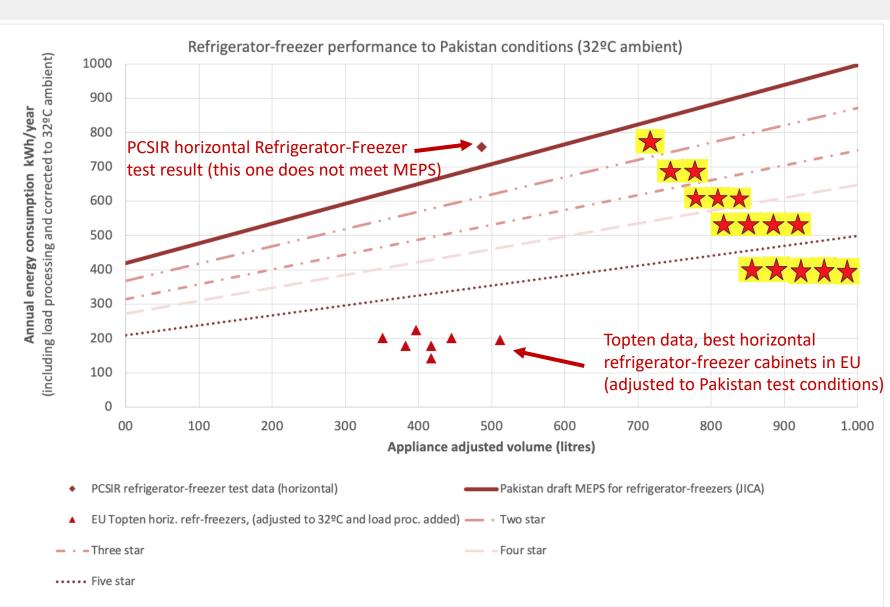
Draft JICA MEPS for refrigerator-freezers are twice the U4E MEPS (as already explained).


Proposed MEPS and labels for horizontal refrigerator-freezers

Proposal:

The same test method, energy label criteria and MEPS apply to horizontal 2-door refrigerator-freezers as apply to vertical 2-door.

(= JICA draft regulation)


MEPS and labels for horizontal refrigerator-freezers

Proposal:

The same test method, energy label criteria and MEPS apply to horizontal 2-door refrigerator-freezers as apply to vertical 2-door.

(= JICA draft regulation)

Horizontal Freezers

MEPS and labels for horizontal **freezers**

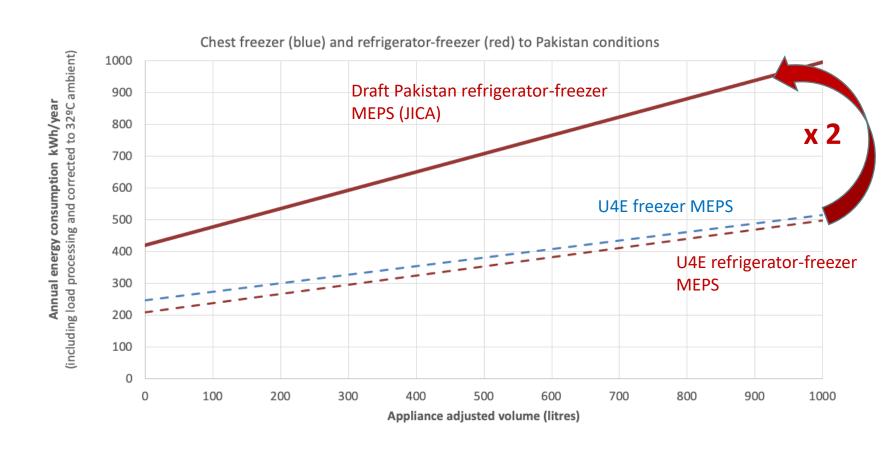
United for Efficiency (U4E) recommendations:

The JICA MEPS for refrigeratorfreezers allow twice the annual energy consumption of the MEPS proposed in U4E.

There is a reason for this....

Table 4. Maximum Annual Energy Consumption (AEC_{Max}) for Optional Reference Temperatures

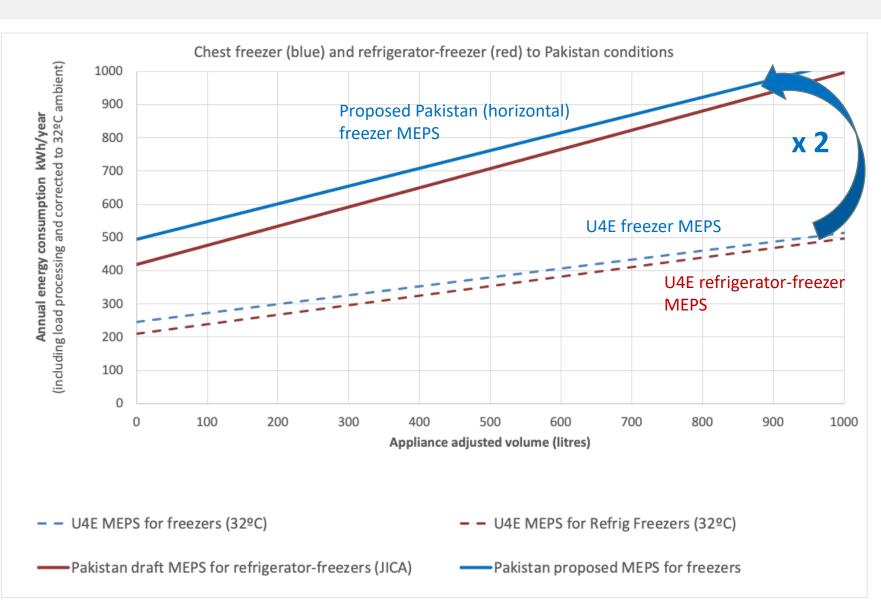
Reference Temperature	Product Category	AEC _{Max} (kWh/year)
	Refrigerators	0.134×AV+84
20°C	Refrigerator-Freezers	0.188×AV+137
	Freezers	0.175×AV+161
	Refrigerators	0.220×AV+137
32°C	Refrigerator-Freezers	0.288×AV+210
	Freezers	0.268×AV+247


JICA draft requirements for Pakistan:

MEPS cut-off level = 0.576×Vadj + 420

MEPS for horizontal freezers - transposed from U4E

Draft JICA MEPS for refrigerator-freezers are twice the U4E MEPS (as already explained).

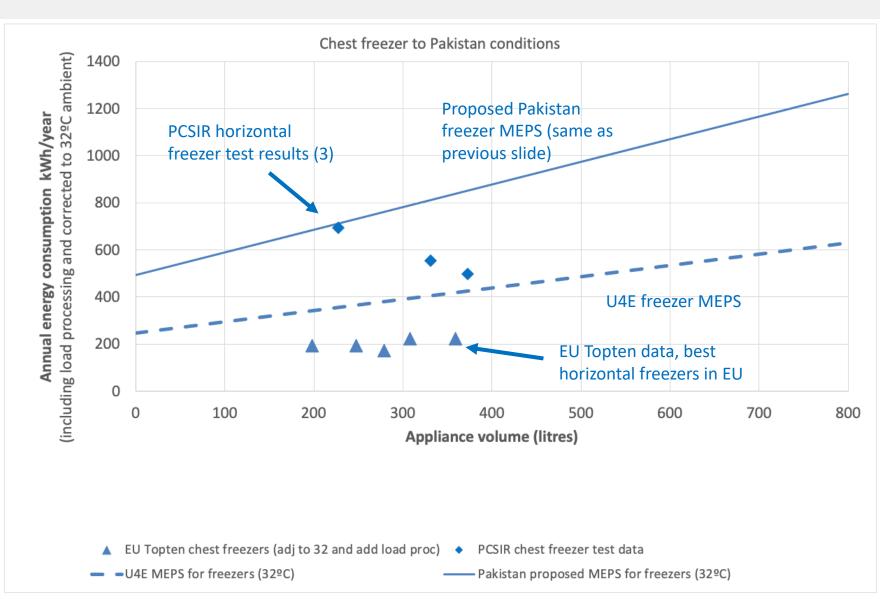


MEPS for horizontal freezers - transposed from U4E

Draft JICA MEPS for refrigerator-freezers are twice the U4E MEPS.

So Pakistan MEPS for freezers are proposed as twice the U4E MEPS for freezers.

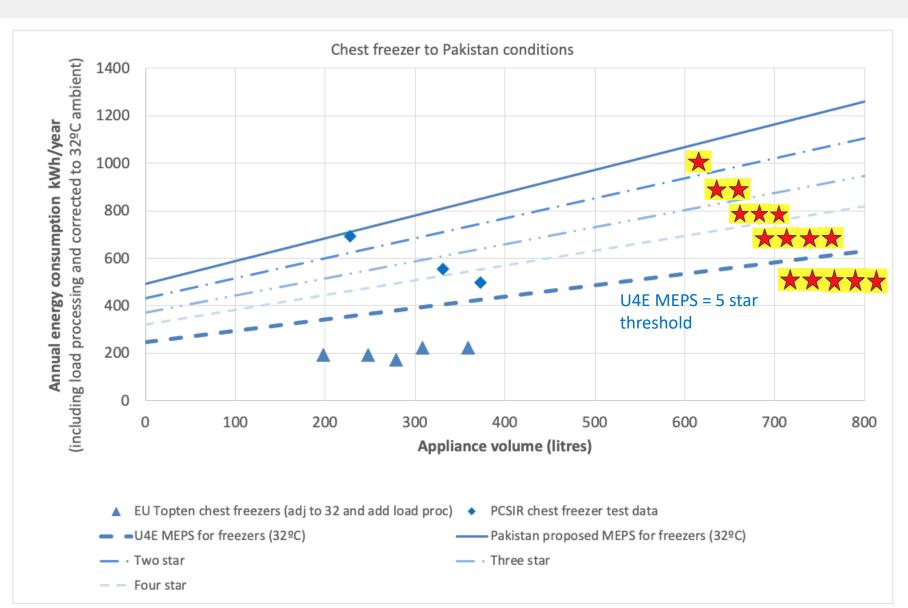
Energy Labels for horizontal freezers



Test results on Pakistan freezers by PCSIR. All three tested passed the MEPS level.

Also some of the most efficient horizontal freezers in EU.

Note: this chart uses Volume (not adjusted volume)


Energy Labels for horizontal freezers

Star labels proposed.

The 5 star threshold is the same as the U4E MEPS (same as for refrigerator-freezers).

Regulatory Requirements - Explained

Horizontal refrigerator-freezer MEPS (same as vertical)

- NEECA / JICA draft regulation
- Cabinets tested to PS 62552
- To determine its Comparative Energy Consumption (CEC):

CEC =
$$E_{Total} = E_{daily32C} \times 365/1000 + E_{aux} + \Delta E_{processing32C} \times 365/1000$$

Horizontal refrigerator-freezer MEPS (same as vertical)

- NEECA / JICA draft regulation
- Cabinets tested to PS 62552
- To determine its Comparative Energy Consumption (CEC):

MEPS cut-off level = 0.576×Vadj + 420 = maximum allowed CEC

The adjusted volume (Vadj) of a refrigerating appliance is calculated by summing the adjusted volume fir each compartment as per equation below.

Vadj =
$$\sum_{i=1}^{n} Kci \times Vi$$

n is number of compartments in the refrigerating appliance

vi is volume of compartment i, which is determined in accordance with PS:IEC 62552-3/2016, Annex H (litres).

Kci is volume adjusted factor for compartment i as determined in accordance with the following equation.

Table 2: Volume adjustment factor by compartment type

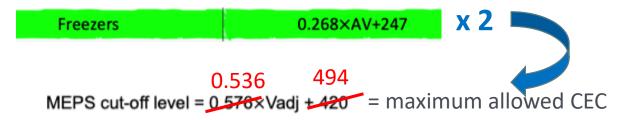
Compartment type	Target temperature	Volume adjustment factor
	(°C)	(K _{ci})
Pantry	17	0.54
Wine storage	12	0.71
Cellar	12	0.71
Fresh food	4	1.00
Chill	2	1.07
Zero star	0	1.14
1 star	-6	1.36
2 star	-12	1.57
3 star and 4 star	-18	1.79

Horizontal refrigerator-freezer Labels (same as vertical)

- NEECA / JICA draft regulation
- Cabinets tested to PS 62552
- To determine its Comparative Energy Consumption (CEC):

CEC =
$$E_{Total} = E_{daily32C} \times 365/1000 + E_{aux} + \Delta E_{processing32C} \times 365/1000$$

Table 3: Star rating band


•		
	Star rating band	
two (2) door	1 star	$0.576 \times V_{adj} + 420 \ge CEC > 0.504 \times V_{adj} + 368$
refrigerator/freezer	2 star	$0.504 \times V_{adj} + 368 \ge CEC > 0.432 \times V_{adj} + 315$
	3 star	$0.432 \times V_{adj} + 315 \ge CEC > 0.374 \times V_{adj} + 273$
	4 star	$0.374 \times V_{adj} + 273 \ge CEC > 0.288 \times V_{adj} + 210$
	5 star	CEC <0.288 × V _{adj} + 210

Horizontal freezers MEPS

- NEECA / JICA draft regulation
- Cabinets tested to PS 62552
- To determine its Comparative Energy Consumption (CEC):

CEC =
$$E_{Total} = E_{daily32C} \times 365/1000 + E_{aux} + \Delta E_{processing32C} \times 365/1000$$

Horizontal freezers MEPS

- NEECA / JICA draft regulation
- Cabinets tested to PS 62552
- To determine its Comparative Energy Consumption (CEC):

CEC =
$$E_{Total} = E_{daily32C} \times 365/1000 + E_{aux} + \Delta E_{processing32C} \times 365/1000$$

Freezers	£,268×AV+247	x 2
0	536 494	
	76 × Vadj ±420 = max	imum allowed CEC

The adjusted volume (Vadj) of a refrigerating appliance is calculated by summing the adjusted volume fir each compartment as per equation below.

Vadj =
$$\sum_{i=1}^{n} Kci \times Vi$$

where

n is number of compartments in the refrigerating appliance

vi is volume of compartment i, which is determined in accordance with PS:IEC 62552-3/2016, Annex H (litres).

Kci is volume adjusted factor for compartment i as determined in accordance with the following equation.

Table 2: Volume adjustment factor by compartment type

Compartment type	Target temperature	Volume adjustment factor
	(°C)	(K _{ci})
Pantry	17	0.54
Wine storage	12	0.71
Cellar	12	0.71
Fresh food	4	1.00
Chill	2	1.07
Zero star	0	1.14
1 star	-6	1.36
2 star	-12	1.57
3 star and 4 star	-18	1.79

Horizontal freezers Labels

- NEECA / JICA draft regulation
- Cabinets tested to PS 62552
- To determine its Comparative Energy Consumption (CEC):

$$CEC = E_{Total} = E_{daily32C} \times 365/1000 + E_{aux} + \Delta E_{processing32C} \times 365/1000$$

Star rating band	Uppe	er limit o	of star ratin	ng band
1 star	CEC <	0,536	x Vadj. +	494
2 star	CEC <	0,470	x Vadj. +	433
3 star	CEC <	0,402	x Vadj. +	371
4 star	CEC <	0,348	x Vadj. +	321
5 star	CEC <	0,268	x Vadj. +	247
MEPS	CEC >	0,536	x Vadj. +	494

How ambitious are the U4E requirements?

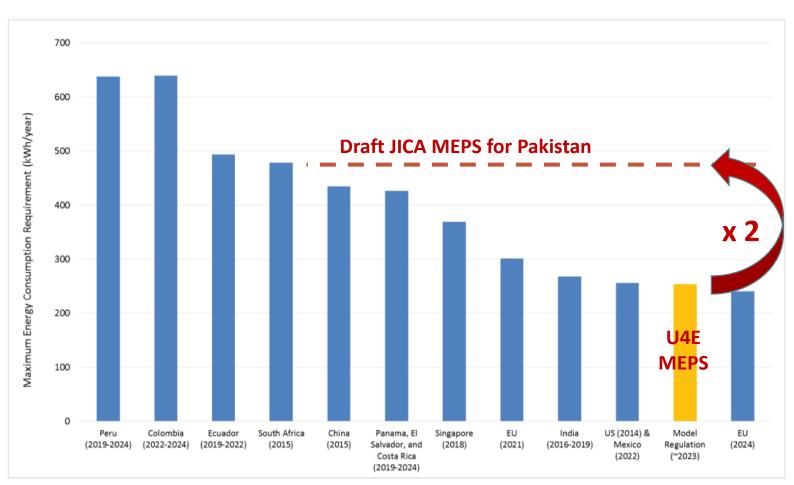


Figure 3: Comparison of maximum energy use requirements for refrigerator-freezers (25°C)

Source: Lawrence Berkeley National Laboratory [LBNL] analysis

The **U4E** MEPS for refrigerator-freezers are:

 Close to the future EU MEPS in 2024.

The **draft JICA (Pakistan)** MEPS for refrigerator-freezers are:

- Close to the 2015 MEPS in South Africa
- 10% less ambitious that those for China in 2015

Proposal

- Domestic Appliance Fridge -Freezer and Freezer (including the original JICA regulations)
 - Star 1 banned 2025
 - Star 2 banned 2027

Regulatory Requirements – Beverage

Horizontal beverage coolers Star labels

- Same test as Visi (ISO 22044)
- Same calculation of EEI as Visi
- Same energy label thresholds as Visi

Horizontal beverage coolers Star labels

- Same test as Visi (ISO 22044)
- Same calculation of EEI as Visi
- Same energy label thresholds as Visi

Table 1. Rated conditions for package temperature and test room climate class

M-can temperature class	Test room climate class	Measurement standard
K1 (average temperature equal to or less than 3.5°C)	CC2 (32.2ºC 65% RH)	ISO 22044

The energy efficiency index (EEI) of a beverage cooler that is covered by this regulation is calculated in accordance with the following formula:

$$EEI = \frac{TEC}{RTEC} \times 100$$

Where:

TEC is the measured Total Energy Consumption over (24 hours), expressed in kWh, derived in accordance with ISO 22044 at rating conditions of Climate Class CC2 and M-can temperature K1.

RTEC is the Reference Total Energy Consumption (over 24 hours) of a beverage cooler of the same volume, expressed in kWh, and is calculated using the formula below¹:

$$RTEC = 2.1 + (0.0067725 \times Vg)$$

Where:

Vg is the measured gross volume derived in accordance with ISO 22044.

Horizontal beverage coolers Star labels

- Same test as Visi (ISO 22044)
- Same calculation of EEI as Visi
- Same energy label thresholds as Visi

The energy efficiency index (EEI) of a beverage cooler that is covered by this regulation is calculated in accordance with the following formula:

$$EEI = \frac{TEC}{RTEC} \times 100$$

Where:

TEC is the measured Total Energy Consumption over (24 hours), expressed in kWh, derived in accordance with ISO 22044 at rating conditions of Climate Class CC2 and M-can temperature K1.

RTEC is the Reference Total Energy Consumption (over 24 hours) of a beverage cooler of the same volume, expressed in kWh, and is calculated using the formula below¹:

$$RTEC = 2.1 + (0.0067725 \times Vg)$$

Where:

Vg is the measured gross volume derived in accordance with ISO 22044.

Table 1. Rated conditions for package temperature and test room climate class

M-can temperature class	Test room climate class	Measurement standard
K1 (average temperature equal to or less than 3.5°C)	CC2 (32.2ºC 65% RH)	ISO 22044

Table 4: Thresholds to be used for the energy label for products sold up to 31 December 2025

Star Level	Maximum EEI
1 Star	100
2 Star	80
3 Star	65
4 Star	35
5 Star	10

Table 5. Thresholds to be used for the energy label for products sold from 1 January 2025

Star Level	Maximum EEI
1 Star	Not Used
2 Star	⊸80 Not used
3 Star	65
4 Star	35
5 Star	10

Registration and Labelling Process

Other Requirements similar for horizontal refrigerator-freezers; horizontal freezers; horizontal beverage coolers

- Product registration required with NEECA
- Registration supported by a test certificate
- Likely fee

Mandatory information to registered with NEECA and published by suppliers about each cabinet (provisional):

- a) type of equipment (i.e., refrigerator-freezer, or freezer or beverage cooler)
- b) unique model number
- c) family model name
- d) country of manufacture
- e) name and address of the manufacturer
- f) name and address of the supplier
- g) size of product (net volume or display area)
- h) rated energy efficiency index (EEI) (beverage only)
- i) energy-efficiency label class (number of stars)
- j) Annual energy consumption in kWh
- k) refrigerant and foam-blowing agent designation