

Update to the Ecodesign Requirements for Televisions - Analysis of the European Market

An assessment of potential levels of ambition of Ecodesign measures applied to the European television market in 2016, and recommendations for new ecodesign requirements.

Authors

Michael Scholand, CLASP Europe
Marie Baton, CLASP Europe

About CLASP

An independent, non-profit organisation, CLASP improves the environmental and energy performance of the appliances and related systems we use every day, lessening their impacts on people and the world around us. CLASP develops and shares practical and transformative policy and market solutions in collaboration with global experts and local stakeholders. We are the leading international resource and voice for energy efficiency standards and labels (S&L) for appliances, lighting, and equipment. Since 1999, CLASP has worked in over 50 countries on 6 continents pursuing every aspect of appliance energy efficiency, from helping structure new policies to evaluating existing programs. Please visit www.clasp.ngo

Table of Contents

1.	The Commission's 2014 television proposal needs updating
2.	New CLASP 2016 Model Database
3.	Rate of Technology Improvement10
4.	Updating the 2014 proposal
5.	CLASP recommended efficiency requirements
6.	Conclusion
Ann	ex A. Copy of the 2016 Database
	t of Tables
	le 1. Commission's 2014 proposal applied to a 2016 model database
	ole 2. Commission's 2014 proposal applied to the 2016 Model Database projected forward to 2018, 0 and 2022 assuming an annual energy performance improvement of 7%
Tab	ole 3. 2016 European TV model database prepared from product fiche files
Tab	ole 4. Observed Improvements in average specific power (W/dm²) in electronic display data11
	ole 5. Actual and projected pass-rates for the models from the 2014 Database (1010 models), with posed Tiers from the 2014 proposal12
Tab	le 6. Suggested EEI values for updated EEI equation, 2016 database13
Tab	le 7. Evaluation of the pass-rate by screen size of the Tiers - no technology progression15
	ole 8. Evaluation of the pass-rate by screen size of the Tiers - with 7% annual technology
	gression
	le 9. Evaluation of the pass-rate by screen size of the Tiers - with 7% annual technology gression and 10% ABC extra allowance for all screens17
Tab	le 10. Expected range of pass-rates for the proposed update of the Commission's 2014 proposal18
Tab	le 11. Suggested EEI values for CLASP recommended scenario19
	technology progression21
	ble 13. Evaluation of the pass-rate for CLASP recommended scenario, by screen size of the Tiers - 22 h 7% annual technology progression22
Tab pro	ole 14. Evaluation of the pass-rate by screen size of the Tiers - with 7% annual technology gression and 10% ABC extra allowance for all screens23
Tab	le 15. Expected pass-rates ranges for the CLASP recommended scenario
	ole 16. Pass-rates for the three scenarios applied to the 2016 Model Database projected forward to 8, 2020 and 2022 assuming a 7% annual energy performance improvement25
Tab	ole 17. Suggested EEI values for updated equation, Scenarios 2 and 325

List of Figures

Figure 1. Scatter plot of average power vs. screen size, 2016 European Televisions	8
Figure 2. Progression of label classes in 2012, 2014 and 2016 television model databases	9
Figure 3. Scatter plot of HD and UHD models in 2016 database with updated equation	.14
Figure 4. Scatter plot of HD and UHD models in 2016 database with CLASP recommended scenario	.20

Acronyms and Abbreviations

ABC Automatic Brightness Control

CF Consultation Forum

DG ENER Directorate General – Energy (European Commission)

dm decimetres (10 centimetres)
EEI Energy Efficiency Index

HD High Definition
HDR High Dynamic Range

IEC International Electrotechnical Commission

LCD liquid crystal display LED Light Emitting Diode

OLED Organic Light Emitting Diode

TV television

UHD Ultra High Definition

1. The Commission's 2014 television proposal needs updating

In late 2014, the European Commission held a Consultation Forum and proposed energy-efficiency requirements for electronic displays. The Commission received comments on this proposal from a number of stakeholders, however since that time, no update has been published. CLASP is hoping that following the recent final approval of the Paris agreement and positive messages from the European Commission concerning ecodesign, the Commission will soon move forward with the review of the 2009 ecodesign regulation for televisions.

To support the policy-making process and assess what potential for ambition might exist with televisions, CLASP developed a database of 2016 televisions based on the product fiche published on the web, and found that the Commission's 2014 draft requirements for televisions are lacking in ambition when applied to a 2016 model database. This report presents the new database and recommends updating the energy-efficiency requirements based on these new data.

The equations below provide the minimum energy efficiency performance levels that were proposed by the Commission in the 2014 draft regulation for televisions. These Tiers were intended to take effect one, three and five years after adoption of the measure:

Tier 1:
$$Power_{max} = 3 \times \left[100 \times \tanh(0.02 + 0.006 \times (Area - 11)) + 4\right] + 6$$

Tier 2: $Power_{max} = 2 \times \left[99 \times \tanh(0.02 + 0.0065 \times (Area - 11)) + 4\right] + 6$
Tier 3: $Power_{max} = 1 \times \left[98 \times \tanh(0.02 + 0.007 \times (Area - 11)) + 4\right] + 6$

Table 1 presents the model pass-rates (i.e., the percentage that meets the requirements) derived by applying the draft 2014 efficiency equations above to the 2016 model database (database is presented in Annex A). CLASP found 100% of the 2016 HD models were compliant with Tier 1, and 86% were compliant with Tier 2. For UHD models 91% were compliant with Tier 1 and more than half of the models on the 2016 market are already compliant with Tier 2. These compliance rates sound very high, however please note that since the Commission has not yet adopted a level, any equations would not apply until 2018 at the earliest. Thus some of the older and less efficient models in the 2016 database will have been replaced with more efficient models, meaning the actual pass-rates in the years the tiers become effective will be even higher.

Table 1. Commission's 2014 proposal applied to a 2016 model database

	Tier/Label Class:	n =	Tier 1	Tier 2	Tier 3
	# of HD Models Passing	304	304	261	7
	# of UHD Models Passing	274	249	142	0
	# of Models Passing	578	553	403	7
	% Models Passing		96%	70%	1%
	% of Models Passing	304	100%	86%	2%
	10 to < 25 dm ²	26	100%	81%	0%
	\leq 25 to $<$ 50 dm ²	142	100%	75%	1%
呈	\leq 50 to < 75 dm ²	66	100%	100%	3%
_	\leq 75 to $<$ 100 dm ²	64	100%	98%	5%
	\leq 100 to $<$ 150 dm ²	5	100%	100%	20%
	\geq 150 dm ²	1	100%	0%	0%
	# of Models Passing	274	91%	52%	0%
	10 to < 25 dm ²	0	0%	0%	0%
	\leq 25 to $<$ 50 dm ²	35	97%	34%	0%
H	\leq 50 to < 75 dm ²	55	98%	44%	0%
\supset	\leq 75 to $<$ 100 dm ²	96	86%	56%	0%
	\leq 100 to $<$ 150 dm ²	71	94%	68%	0%
	≥ 150 dm ²	17	65%	24%	0%

The Commission's 2014 proposal has one level of stringency at each Tier, and that requirement is applied to both screen resolutions – HD and UHD. CLASP is concerned that this approach may not present the most optimal solution for ecodesign, given that it appears to have a more significant impact UHD displays compared to HD displays, and it seems to have a limited impact on HD displays. Note however that HD displays are in decline as UHD becomes more popular in the market.

We should also take into account the fact that the Tiers presented in the 2014 proposal would be scheduled to take effect usually two years hence. This means that the draft 2014 Tiers – not yet adopted – would apply at the earliest in 2018 for Tier 1. Due to the fact that televisions are experiencing rapid improvements in energy-efficiency driven by a number of different factors, including advances in light emitting diodes, computer processors, quantum dots and the emergence of LED direct emissive displays, the impact of an ecodesign policy measure is best made taking into account a rate of improvement over time.

Thus, in order to better understand the impact of the 3 proposed Tiers on the year of their respective entry into force, CLASP prepared a projection of television performance applying a constant average improvement in the energy efficiency of electronic displays of 7% per year (see Chapter 3 of this report for the derivation and discussion of this projection).

Table 2 presents a technology projection analysis and regulatory measure compliance rates, applying an estimated 7% improvement in energy performance improvement to the 2016 database. It is assumed that the draft Ecodesign regulation takes effect in Europe in 2018, 2020 and 2022. Applying the annual energy-efficiency improvements, the compliance rates of the current model dataset become quite large. For HD TVs, 100% of the models are projected to comply with Tier 1 and Tier 2, meaning that the Commission's 2014 proposal would not remove any HD models from the market until 2022. For UHD models, only 3% of models would be impacted in 2018 and just 12% in 2020. In 2022, with a 7% technology improvement per year between 2016 and 2022, only 26% of UHD televisions compliant with Commission's Tier 3 equation.

Table 2. Commission's 2014 proposal applied to the 2016 Model Database projected forward to 2018, 2020 and 2022 assuming an annual energy performance improvement of 7%

Technology Projection	Percent of HD models passing	Percent of UHD models passing
Proposed Tier 1 in 2018	100%	97%
Proposed Tier 2 in 2020	100%	88%
Proposed Tier 3 in 2022	66%	26%

From this analysis, we conclude that the two first Tiers of the proposal as presented to the Consultation Forum in 2014 would have a very limited impact on the market, and that the third Tier, although sending a strong long-term signal, appears to disproportionately impact UHD displays even when taking into account efficiency improvements. It was due to this concern that CLASP developed a new database of 2016 European television models and conducted this new analysis on a potential update to the Commission's regulatory level.

2. New CLASP 2016 Model Database

CLASP compiled a database of European television models by visiting the websites of popular manufacturers across Europe, including: LG, Loewe, Panasonic, Philips, Samsung, Sharp, Sony, Thomson and Toshiba. The television product fiche files for models currently available on these manufacturer's websites were downloaded and imported into Microsoft Excel. A copy of this database can be found in Annex A to this report, and is also available in spreadsheet format on the CLASP website.

The table below presents a summary of the TV models in the 2016 database and broken down by resolution – high definition (HD) and ultra high definition (UHD). The average specific power¹ was found to be 1.06 for HD displays and 1.20 for UHD displays. This shows that for current televisions on the European market in 2016, UHD requires an average of approximately 13% more power per unit screen area when compared to HD displays.

Screen Resolution	Average specific power (W/dm²)	Model Count
High Definition (HD)	1.06 W/dm ²	n = 304
Ultra High Definition (UHD)	1.20 W/dm ²	n = 274
All Models	1.13 W/dm ²	n = 578

Table 3. 2016 European TV model database prepared from product fiche files

The graph below presents the average power of HD and UHD televisions by screen size.

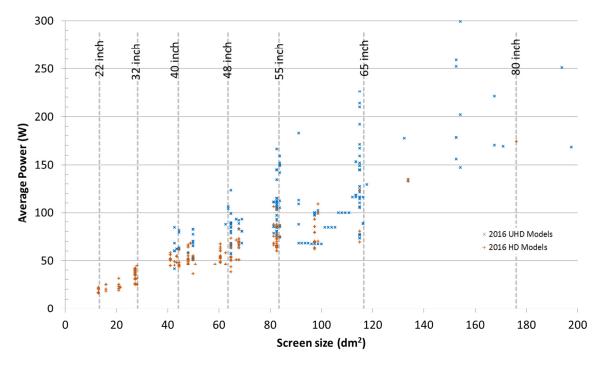


Figure 1. Scatter plot of average power vs. screen size, 2016 European Televisions

-

¹ Specific power is a measure of average watts of power consumed while playing the IEC 62087 test video divided by the screen area. In the above table, the data show that combining HD and UHD, approximately 1.13 watts of power are needed per square decimetre (100 square centimetres) of screen area.

Comparing to previous television model databases, we note that there has been an improvement in energy performance when comparing the energy label classes with our 2016 database. Figure 2 presents the European model databases from 2012 and 2014 with 2016.

Figure 2. Progression of label classes in 2012, 2014 and 2016 television model databases

The new CLASP 2016 database does not include computer monitors. We have noticed from our analysis of previous datasets that their specific power consumption tends to be on average higher than for televisions. We understand that one reason for this is that older / less efficient display technologies are maintained for the production of computer screens at lower cost. There is however no technical reason for computer monitors not to achieve the same efficiency levels as televisions.

Another noticeable difference between our new 2016 dataset and the 2014 data base is the relative share of HD screens versus UHD. In the 2014 database, UHD represented only 5% of the models on the market, however in 2016, UHD has almost the same number of models as HD. This significant increase in the availability of UHD displays in the market raises their relative importance and enables a calculation of the increased power consumption of UHD vs. HD. On average, we found that the specific power consumption (W/dm²) of UHD screens is on average 13% higher than for HD screens. Thus, the significant increase in the UHD share would also have an impact on the respective pass-rates when the effect of an efficiency requirement is applied to both datasets.

3. Rate of Technology Improvement

As discussed above, television technology has continued to improve in efficiency, along with advancements in LEDs, computer processors and new design configurations. Within the last decade, there has been a transition from cathode ray tubes to flat-panel LCD displays, first back-lit with cold-cathode fluorescent tube and then later LED technology. There has also been plasma displays, and recently organic light emitting diode (OLED) displays. And the technology continues to evolve, with LED direct emissive displays (i.e., removing the LCD panel filter) expected to be demonstrated at the Consumer Electronics Show in Las Vegas in January 2017 and to become main stream in about 4 years.

With these improvements in technology, the average efficiency of televisions increases, meaning they are able to provide a better viewing experience using less power. The following are some of the display technology trends that are having an impact, improving energy-efficiency:

- Light emitting diodes (LEDs) the light source driving most television screens today continues
 to benefit from improvements in efficacy (i.e., lumens of light per watt of power consumed), as
 well as better colour stability and accuracy;
- Back-lit display technology incorporating dynamic full array architecture for certain models, rather than have the LEDs running all the time or with limited picture-related dimming (e.g. edge lit displays) television manufacturers have developed technology to control the backlit zones (several hundred) in the area of the full display) in order to enhance the viewing experience while also saving energy;
- Computer processors the performance both in terms of speed/calculations and power
 consumption for processors used to run the televisions, particularly in the complex processing
 requirements of display drive has continued to advance, with ultra-high speed dedicated
 instruction set 8-core processors now being used in certain models; and
- Direct emissive displays OLED televisions are on the market already, and in January 2018 it's
 expected that the first direct emissive displays incorporating quantum dot nanocrystal
 enhanced LED pixels will be launched with a 30 to 50% predicted improvement in display
 energy efficiency for a given brightness. In some 2016 high-end LCD displays, nanocrystal filters
 are already providing reduced light transmission loss from back lights and significant
 improvements in their colour performance.

Thus, the technology improvements observed in recent years are projected to continue over the next five years, with direct emissive displays offering a very significant improvement in energy efficiency savings.

Given the above technology trends in the marketplace, CLASP reviewed the average specific power of a series of databases to keep track of the annual rate of performance improvement. Table 4 presents these databases that were analysed, and the annual average specific power improvement.

Table 4. Observed Improvements in average specific power (W/dm²) in electronic display data

Database	Value
DigitalEurope 2012 Model database – average specific power	1.833 W/dm ²
DigitalEurope 2014 Model database – average specific power	1.629 W/dm ²
Percent improvement over 2 years	11%
Annualised percent improvement	5.6%
CLASP February 2015 Model database – average specific power UHD	1.320 W/dm ²
CLASP September 2016 Model database – average specific power UHD	1.146 W/dm ²
Percent improvement over 1.5 years	13.2%
Annualised (note: 18 month period) percent improvement	8.8%
Average annualised percent improvement of Digital Europe and CLASP model databases	7.2%

Given this, when conducting our analysis on the impact of the proposed EEI values on our new (2016 models) database, we will use an annual percentage improvement rate of 7% per annum.

4. Updating the 2014 proposal

In this report, CLASP presents a suggested update to the Commission's 2014 draft efficiency proposal based on the new 2016 television model database discussed in Chapter 2 (and presented in Annex A). In order to prepare these new requirements, CLASP evaluated the percentage pass-rates of the 2014 minimum energy performance equations applied to the 2014 database and then projected forward the 2014 database with 7% annual improvement (see Chapter 3 for discussion on rate of technology progression). The actual and projected pass-rates for the proposed Tiers from the 2014 proposal applied to the models of the 2014 database are presented in Table 5.

Table 5. Actual and projected pass-rates for the models from the 2014 Database (1010 models), with proposed Tiers from the 2014 proposal

Tier	2014 database	Percent of models that meet the performance Tiers applying a 7% annual efficiency improvement			
	models passing	2016	2018	2020	
Tier 1	72%	83%			
Tier 2	46%		73%		
Tier 3	5%			46%	

When updating the equations and thresholds in this new analysis, CLASP sought to be consistent with the level of ambition of the Commission's 2014 proposal. We however took into account some of the comments that were made following the presentation of the 2014 proposal by the Consultation Forum members. As a result we are suggesting more evenly spaced Tiers, with a higher percentage of models that meet the requirements for Tier 3.

Furthermore, as discussed in Chapter 1 of this report, it would seem that having one equation for both HD and UHD models would either omit potential energy savings from HD models or apply disproportionately higher regulatory pressure on UHD models. Therefore, CLASP's proposal in this Chapter offers different threshold requirements for HD and UHD, in recognition of the utility offered by the higher resolution screens. The percentages pass-rates for Tier 1 and 2 of current models are slightly lower that pass-rates proposed in 2014 due to the fact that a larger share of HD TVs would now be excluded, whereas the pressure on UHD displays would be slightly less strict than that which was proposed in 2014. This aspect should be considered in the knowledge that HD displays are in decline as UHD becomes more popular in the European market.

The proposed update of the Commission's 2014 proposal presented in this report is based on the same equation structure that the Commission introduced in its 2014 draft regulation, making adjustments to move the curve. 2014 draft regulation, making adjustments to move the curve. However, rather than propose three separate equations for each Tier, CLASP suggests to have one equation to calculate the EEI and then have different EEI requirements – one set of requirements for HD and one set of requirements for UHD. This EEI value can then also be used on the energy label, where we suggest the Commission not make an allowance for UHD vs. HD, thus consumers would know the relative energy consumption of the model they are selecting whether the model is HD or UHD, and choose accordingly.

Our suggested energy efficiency equation is presented below, and Table 6 presents the suggested EEI values for HD and UHD at Tiers 1, 2 and 3. For this analysis, we assume that the regulation will take effect starting in 2018, with Tier 2 in 2020 and Tier 3 in 2022.

Where:

Power is the average measured power consumption using the IEC 62087; and **Area** is the screen size in decimetres squared (dm²).

Table 6. Suggested EEI values for updated EEI equation, 2016 database

Tiers	HD requirement	UHD requirement
Tier 1 (2018)	EEI ≤ 0.88	EEI ≤ 1.03
Tier 2 (2020)	EEI ≤ 0.74	EEI ≤ 0.90
Tier 3 (2022)	EEI ≤ 0.60	EEI ≤ 0.76

Figure 3 presents a scatter plot of the HD and UHD models from the CLASP 2016 database, using the new equation presented above and the six different EEI values.



Figure 3. Scatter plot of HD and UHD models in 2016 database with updated equation

Although we are aware of the cost implications of manufacturing large screens, linked to the current manufacturing process, we are not aware of any technological barrier that would prevent the introduction of large screens (i.e., >120 dm²) that would be as efficient as the smaller ones. Moreover, we understand that yield rates are expected to improve with the introduction of direct emissive LED displays, further facilitating the manufacturing of large screen formats.

Table 7 presents the pass-rates for the 2016 database using the above equation and EEI values.² This table does not take into account any progression in the technology, which we discussed in Chapter 3 would be approximately 7% per annum. Rather, this table simply presents the pass-rate of the 2016 models relative to Tiers that would take effect in 2018 (Tier 1), 2020 (Tier 2) and 2022 (Tier 3). Due to the fact that televisions only have a 2 to 3 year life in the market, it is not expected that any of the models in the 2016 database will still be for sale by Tier 2 – they will have all been replaced with more efficient models.

Table 7. Evaluation of the pass-rate by screen size of the Tiers - no technology progression

	Proposed EEI – Non UHD		0.88	0.74	0.60
	Proposed EEI – UHD		1.03	0.90	0.76
	Tier/Label Class:	n =	Tier 1	Tier 2	Tier 3
	# of HD Models Passing	304	182	79	7
	# of UHD Models Passing	274	137	82	29
	# of Models Passing	578	319	161	36
	% Models Passing		55%	28%	6%
	% of Models Passing	304	60%	26%	2%
	10 to < 25 dm ²	26	77%	31%	0%
	≤ 25 to < 50 dm²	142	41%	7%	1%
皇	≤ 50 to < 75 dm²	66	79%	36%	3%
	≤ 75 to < 100 dm²	64	78%	55%	5%
	≤ 100 to < 150 dm²	5	40%	40%	20%
	≥ 150 dm²	1	0%	0%	0%
	# of Models Passing	274	50%	30%	11%
	10 to < 25 dm ²	0	0%	0%	0%
Ω	≤ 25 to < 50 dm²	35	29%	26%	0%
OHD	≤ 50 to < 75 dm²	55	38%	31%	7%
–	≤ 75 to < 100 dm²	96	54%	32%	8%
	≤ 100 to < 150 dm²	71	68%	34%	24%
	≥ 150 dm²	17	35%	6%	0%

² To account for the additional power consumption found for UHD displays, we are suggesting a different EEI requirement for HD and UHD displays under Ecodesign. However, for Energy Labelling, the threshold values for the label classes would be the same for both HD and UHD displays, enabling consumers to view the relative power consumption of HD and UHD at the time of purchase.

Although it looks like many models would be removed from the market, the reality is that with improvements in efficiency, the impact will not be so severe. Table 8 presents the same EEI requirements, however taking into account the progression of 7% per annum (see Chapter 3). The model pass-rates are therefore between 71% and 84% of the expected models on the market in each of the given years – Tier 1 in 2018, Tier 2 in 2020 and Tier 3 in 2022.

Table 8. Evaluation of the pass-rate by screen size of the Tiers - with 7% annual technology progression

	Proposed EEI – Non UHD		0.88	0.74	0.60
	Proposed EEI – UHD		1.03	0.90	0.76
	Tier/Label Class:	n =	Tier 1	Tier 2	Tier 3
	# of HD Models Passing	304	254	241	215
	# of UHD Models Passing	274	209	219	203
	# of Models Passing	578	463	460	418
	% Models Passing		80%	80%	72%
	% of Models Passing	304	84%	79%	71%
	10 to < 25 dm ²	26	85%	81%	77%
	≤ 25 to < 50 dm²	142	70%	63%	51%
皇	≤ 50 to < 75 dm²	66	98%	98%	94%
_	≤ 75 to < 100 dm²	64	97%	95%	92%
	≤ 100 to < 150 dm²	5	100%	100%	40%
	≥ 150 dm²	1	100%	0%	0%
	# of Models Passing	274	76%	80%	74%
	10 to < 25 dm ²	0	0%	0%	0%
	≤ 25 to < 50 dm²	35	77%	77%	77%
OH0	≤ 50 to < 75 dm²	55	89%	89%	84%
	≤ 75 to < 100 dm²	96	71%	78%	68%
	≤ 100 to < 150 dm²	71	80%	85%	80%
	≥ 150 dm²	17	47%	47%	47%

When considering these pass-rates, in addition to the expected efficiency improvement over time, one should also take into account the benefit of an extra power allowance for automatic brightness control (ABC). We would suggest that the Commission consider encouraging ABC through its ecodesign policy measure, since experts report that this feature would save energy when enabled and used in a normal domestic setting. Manufacturers could be encouraged to incorporate ABC into their products by offering an adjustment to the energy-efficiency index or some other power allowance.

The specific power consumption and database model pass-rates presented above do not take into account any special allowance for ABC. Should the revised regulation offer an additional allowance for ABC - that could potentially significantly increase the pass-rates presented in this scenario. Experts estimate that the energy savings from the use of ABC in typical conditions would justify an extra allowance of about 10%. We therefore calculated the pass-rates for the revised requirements proposed in this Chapter using the 2016 database and applying a 10% ABC allowance to all models. In reality, the market would fall somewhere between the pass-rates of the technology progression

without ABC allowance (Table 8) and the pass-rates with an extra ABC allowance for all screens (Table 9). Of course, not all screens would offer ABC even with an incentive built into the regulation, but it would be difficult to anticipate the market share of ABC screens, or whether all segments of the market would adopt the same proportion of ABC-enabled screens.

Table 9. Evaluation of the pass-rate by screen size of the Tiers - with 7% annual technology progression and 10% ABC extra allowance for all screens

	Proposed EEI – Non UHD		0.88	0.74	0.60
	Proposed EEI – UHD		1.03	0.90	0.76
	Tier/Label Class:	n =	Tier 1	Tier 2	Tier 3
	# of HD Models Passing	304	299	286	254
	# of UHD Models Passing	274	236	236	235
	# of Models Passing	578	535	522	489
	% Models Passing		93%	90%	85%
	% of Models Passing	304	98%	94%	84%
	10 to < 25 dm ²	26	100%	100%	85%
	\leq 25 to < 50 dm ²	142	97%	88%	70%
皇	≤ 50 to < 75 dm²	66	100%	100%	98%
_	≤ 75 to < 100 dm²	64	98%	98%	97%
	≤ 100 to < 150 dm²	5	100%	100%	100%
	≥ 150 dm²	1	100%	100%	100%
	# of Models Passing	274	86%	86%	86%
	10 to < 25 dm ²	0	0%	0%	0%
	≤ 25 to < 50 dm²	35	83%	83%	83%
OH0	≤ 50 to < 75 dm²	55	95%	95%	95%
	≤ 75 to < 100 dm²	96	83%	83%	83%
	≤ 100 to < 150 dm²	71	92%	92%	92%
	≥ 150 dm²	17	59%	59%	53%

We do not consider that any other extra power allowance for features other than ABC would be justified or should be integrated in the regulation. However, should this be the case, this would further increase the pass-rates compared to what is presented above.

In conclusion to this chapter, the EEI levels that we suggest be considered as an update of the Commission's 2014 proposal – taking into account the technology improvement since 2014 and some of the stakeholders comments following the CF – would represent pass-rates that are expected to the within the ranges presented in Table 10.

Table 10. Expected range of pass-rates for the proposed update of the Commission's 2014 proposal

	HD % of models passing	UHD % of models passing
Today (2016), Tier 1	60% to 79%	50% to 64%
Tier 1 in 2018	84% to 98%	76% to 86%
Tier 2 in 2020	79% to 94%	80% to 86%
Tier 3 in 2022	71% to 84%	74% to 86%

In view of these ranges, the updated levels may not be ambitious enough to significantly push the efficiency of the market. Therefore, the following Chapter presents a CLASP recommended scenario that we believe is both realistic and satisfactory in terms of improving the efficiency of televisions.

5. CLASP recommended efficiency requirements

Considering the very high projected pass-rates ranges at each Tier in future years, as presented in Chapter 4, CLASP developed a more ambitious scenario made of slightly more stringent efficiency requirements, but in which approximately one-third of the models would be removed from the market in each year the Tier enter into force.

For the CLASP recommended scenario we maintained the same approach as presented in Chapter 4 with different EEI levels for HD and UHD and the same EEI equation:

Where:

Power is the average measured power consumption using the IEC 62087; and

Area is the screen size in decimetres squared (dm²).

Table 11 below presents the suggested EEI values for HD and UHD at Tiers 1, 2 and 3 for the CLASP recommended scenario. As discussed above, this scenario takes into account requirements that are slightly more ambitious than the previous chapter, removing approximately one-third of the models from the market in each year the Tier enter into force. For this analysis, we assume that the regulation will take effect starting in 2018, with Tier 2 in 2020 and Tier 3 in 2022.

Table 11. Suggested EEI values for CLASP recommended scenario

Tiers	HD requirement	UHD requirement
Tier 1 (2018)	EEI ≤ 0.80	EEI ≤ 0.92
Tier 2 (2020)	EEI ≤ 0.67	EEI ≤ 0.80
Tier 3 (2022)	EEI ≤ 0.55	EEI ≤ 0.67

Figure 4 presents a scatter plot of the HD and UHD models from the CLASP 2016 database, using the new equation presented above and the six different EEI values presented in Table 11 (note that Tier 2 and Tier 3 for UHD are respectively the same levels as Tier 1 and Tier 2 for HD).

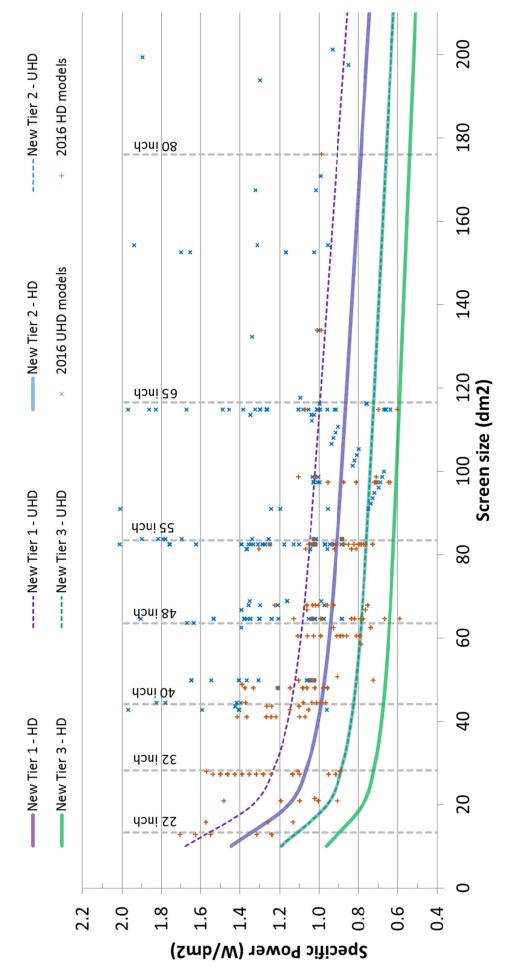


Figure 4. Scatter plot of HD and UHD models in 2016 database with CLASP recommended scenario

Table 12 presents the pass-rates for the 2016 database using the above equation and EEI values.³ This table does not take into account any progression in the technology, which we discussed in Chapter 3 would be approximately 7% per annum. Rather, this table simply presents the pass-rate of the 2016 models relative to Tiers that would take effect in 2018 (Tier 1), 2020 (Tier 2) and 2022 (Tier 3). Due to the fact that televisions only have a 2 to 3 year life in the market, it is not expected that any of the models in the 2016 database will still be for sale by Tier 2 – they will have all been replaced with more efficient models.

Table 12. Evaluation of the pass-rate for CLASP recommended scenario, by screen size of the Tiers - no technology progression

	Proposed EEI – HD		0.80	0.67	0.55
	Proposed EEI – UHD		0.92	0.80	0.67
	Tier/Label Class:	n =	Tier 1	Tier 2	Tier 3
	# of HD Models Passing	304	123	25	1
	# of UHD Models Passing	274	92	34	16
	# of Models Passing	578	215	59	17
	% Models Passing		37%	10%	3%
	% of Models Passing	304	40%	8%	0%
	10 to < 25 dm ²	26	58%	4%	0%
	≤ 25 to < 50 dm ²	142	13%	1%	0%
무	≤ 50 to < 75 dm²	66	62%	15%	2%
	≤ 75 to < 100 dm²	64	72%	17%	0%
	≤ 100 to < 150 dm²	5	40%	40%	0%
	≥ 150 dm²	1	0%	0%	0%
	# of Models Passing	274	34%	12%	6%
	10 to < 25 dm ²	0	0%	0%	0%
Ω	≤ 25 to < 50 dm ²	35	26%	3%	0%
UHD	≤ 50 to < 75 dm²	55	31%	7%	0%
	\leq 75 to < 100 dm ²	96	42%	13%	8%
	≤ 100 to < 150 dm²	71	35%	24%	11%
	≥ 150 dm ²	17	6%	0%	0%

Although it looks like many models would be removed from the market, the reality is that with improvements in efficiency, the impact will not be so severe. Table 13 presents the same EEI requirements, however taking into account the progression of 7% per annum (see Chapter 3). The model pass-rates are therefore between a half and two thirds of the expected models on the market in each of the given years – Tier 1 in 2018, Tier 2 in 2020 and Tier 3 in 2022 – both for HD and UHD.

³ To account for the additional power consumption found for UHD displays, we are suggesting a different EEI requirement for HD and UHD displays under Ecodesign. However, for Energy Labelling, the threshold values for the label classes would be the same for both HD and UHD displays, enabling consumers to view the relative power consumption of HD and UHD at the time of purchase.

Table 13. Evaluation of the pass-rate for CLASP recommended scenario, by screen size of the Tiers - with 7% annual technology progression

	Proposed EEI – HD		0.80	0.67	0.55
	Proposed EEI – UHD		0.92	0.80	0.67
	Tier/Label Class:	n =	Tier 1	Tier 2	Tier 3
	# of HD Models Passing	304	216	200	152
	# of UHD Models Passing	274	140	141	137
	# of Models Passing	578	356	341	289
	% Models Passing		62%	59%	50%
	% of Models Passing	304	71%	66%	50%
	10 to < 25 dm ²	26	77%	77%	69%
	≤ 25 to < 50 dm²	142	51%	49%	25%
무	≤ 50 to < 75 dm²	66	94%	88%	73%
	≤ 75 to < 100 dm²	64	92%	78%	75%
	≤ 100 to < 150 dm²	5	40%	40%	40%
	≥ 150 dm²	1	0%	0%	0%
	# of Models Passing	274	51%	51%	50%
	10 to < 25 dm ²	0	0%	0%	0%
٥	\leq 25 to < 50 dm ²	35	29%	29%	29%
OHD	≤ 50 to < 75 dm²	55	44%	44%	38%
	≤ 75 to < 100 dm²	96	54%	55%	54%
	≤ 100 to < 150 dm²	71	68%	68%	68%
	≥ 150 dm²	17	35%	35%	35%

Table 12 and Table 13 present the pass-rates respectively without and with technology improvements over time, but none of these two tables accounts for additional allowances associated to specific features. As explained in Chapter 4, Our suggestion is that a 10% extra allowance for ABC enabled televisions would be justified, however we cannot predict what share of the market and what segments will offer ABC. We therefore calculated the pass-rates with a 10% extra allowance applied to all models, acknowledging that reality is expected to be somewhere between the scenario with no allowance and the scenario with allowance for all. Table 14 presents the pass-rates by size with this 10% allowance.

Table 14. Evaluation of the pass-rate by screen size of the Tiers - with 7% annual technology progression and 10% ABC extra allowance for all screens

	Proposed EEI – HD		0.80	0.67	0.55
	Proposed EEI – UHD		0.92	0.80	0.67
	Tier/Label Class:	n =	Tier 1	Tier 2	Tier 3
	# of HD Models Passing	304	256	242	222
	# of UHD Models Passing	274	206	206	172
	# of Models Passing	578	462	448	394
	% Models Passing		80%	78%	68%
	% of Models Passing	304	84%	80%	73%
	$10 \text{ to} < 25 \text{ dm}^2$	26	92%	81%	77%
	\leq 25 to < 50 dm ²	142	70%	63%	52%
HD	\leq 50 to < 75 dm ²	66	98%	98%	97%
	\leq 75 to $<$ 100 dm ²	64	97%	95%	95%
	\leq 100 to $<$ 150 dm ²	5	100%	100%	60%
	≥ 150 dm²	1	100%	0%	0%
	# of Models Passing	274	75%	75%	63%
	$10 \text{ to} < 25 \text{ dm}^2$	0	0%	0%	0%
OHD	\leq 25 to $<$ 50 dm ²	35	77%	77%	57%
	\leq 50 to < 75 dm ²	55	85%	85%	64%
	\leq 75 to $<$ 100 dm ²	96	70%	70%	64%
	\leq 100 to $<$ 150 dm ²	71	80%	80%	68%
	≥ 150 dm²	17	47%	47%	47%

As mentioned in Chapter 4, we do not consider that any other extra allowance for other features than ABC would be justified or should be integrated in the regulation. Should this however be the case, that would of course also increase the pass-rates compared to what is presented above. In conclusion to this chapter, the EEI levels proposed for the CLASP recommended scenario would represent pass-rates that are expected to be within the ranges presented in Table 10.

Table 15. Expected pass-rates ranges for the CLASP recommended scenario

	HD % of models passing	UHD % of models passing
Today (2016), Tier 1	40% to 65%	34% to 49%
Tier 1 in 2018	71% to 84%	51% to 75%
Tier 2 in 2020	66% to 80%	51% to 75%
Tier 3 in 2022	50% to 73%	50% to 63%

In view of these ranges, although the pass-rates of the CLASP recommendation look impressively low when applied to the current database of 2016 products without taking into account any technology improvement nor extra allowance, these levels seem very reasonable when projecting the pass-rates in a way that better reflect the reality of implementation if the proposed Tiers.

6. Conclusion

CLASP downloaded hundreds of product fiche files from the manufacturer's European websites and prepared a database of television models offered on the market in 2016. We compared 2012, 2014, 2015 and 2016 databases and derived an average annual improvement rate of 7% per annum which was applied to the 2016 datasets in order to project the expected energy performance of display technologies in 2018, 2020 and 2022.

Our conclusion following the analysis of this new data is that the Commission's 2014 proposal is outdated and would have virtually no effect on the market until 2022. We therefore strongly recommend that the Commission revise this proposal. As examples of what the Commission might consider, we developed two scenarios: an update to the Commission's proposal and a CLASP recommended level.

CLASP assessed the model pass-rate of the Commission's proposal from the last Consultation Forum, both in the year it was proposed and applying a 7 percent annual performance improvement to determine the percentage model pass-rates in Tiers 1, 2 and 3. When updating the requirements of the Commission's proposal to be based on the 2016 database, we were consistent with the level of ambition applied in the Commission's 2014 proposal. However, we did take into account some of the comments that were made in response to the Commission's 2014 proposal, thereby arriving at more evenly spaced Tiers, with a higher percentage of models that meet the Tier 3 requirements.

In the 2014 proposal, the Commission had separate equations with maximum power ratings for each of the three Tiers, and these requirements were applied to both HD and UHD models. CLASP has considered this approach, but in this proposal, we recommend using one equation, converting to an energy efficiency index (EEI), and using different EEI values for HD and UHD displays, in recognition of the 13% higher specific power consumption of UHD displays. Our updated Commission proposal and CLASP recommended scenario are both structured around this approach of one equation and different EEI values

Given all of the above, this report presents three scenarios which are summarised below:

- Scenario 1. Commission's draft 2014 option separate equations for Tiers 1, 2, 3 and combined HD and UHD requirements (see Chapter 1);
- Scenario 2. Updated Commission option keeping the same degree of ambition (i.e., approximately equivalent pass-rates for models, except less ambition for Tier 3), update the requirements by using one equation and different EEI values for Tiers 1, 2, 3 and separate EEI levels for HD and UHD (see Chapter 4); and
- Scenario 3. CLASP recommended option keeping the same structure as the updated Commission proposal, CLASP recommends a higher level of ambition using the same single equation but more ambitious EEI values for Tiers 1,2, 3 and keeping different requirements for HD and UHD (see Chapter 5).

The scenarios above are given in order of increasing ambition, and the expected pass-rates of these three scenarios are presented below, using the 2016 database and applying a technology progression of 7 percent per annum improvement from 2016.

Table 16. Pass-rates for the three scenarios applied to the 2016 Model Database projected forward to 2018, 2020 and 2022 assuming a 7% annual energy performance improvement

Scenario	Screen Resolution	Pass-rates for proposed Tier 1 in 2018	Pass-rates for proposed Tier 2 in 2020	Pass-rates for proposed Tier 3 in 2022
1. Commission's 2014 Consultation Forum proposal	HD	100%	100%	66%
	UHD	97%	88%	26%
2. Update to Commission's	HD	84% to 98%	79% to 94%	71% to 84%
proposal using 2016 data	UHD	76% to 86%	80% to 86%	74% to 86%
3. CLASP recommended,	HD	71% to 84%	66% to 80%	50% to 73%
higher ambition	UHD	51% to 75%	51% to 75%	50% to 63%

The Commission's 2014 proposal will not achieve the objectives of ecodesign if it is kept as originally proposed in 2014 and applied to the market in 2018, 2020 and 2022, in that it will have practically no impact on the efficiency of the models put on the market until 2022.

However, the other two scenarios are both reasonable possibilities – either the updated Commission's proposal, which keeps the same degree of ambition (in terms of model pass-rates) and applies them to the updated database; or the CLASP recommended level which goes slightly further in ambition, recognising the importance of CO₂ savings, the Paris Agreement and the global leadership Europe needs to demonstrate on energy-efficiency.

The equation below is used in Scenarios 2 and 3, with different EEI values for Tiers 1, 2 and 3 of ecodesign. For this analysis, we assume that the regulation will take effect starting in 2018, with Tier 2 in 2020 and Tier 3 in 2022.

Where:

Power is the average measured power consumption using the IEC 62087; and **Area** is the screen size in decimetres squared (dm²).

Table 17. Suggested EEI values for updated equation, Scenarios 2 and 3

Tiers	Scenario 2. Upda	nted Commission	Scenario 3. CLASP Recommended		
riers	HD	UHD	HD	UHD	
Tier 1 (2018)	EEI ≤ 0.88	EEI ≤ 1.03	EEI ≤ 0.80	EEI ≤ 0.92	
Tier 2 (2020)	EEI ≤ 0.74	EEI ≤ 0.90	EEI ≤ 0.67	EEI ≤ 0.80	
Tier 3 (2022)	EEI ≤ 0.60	EEI ≤ 0.76	EEI ≤ 0.55	EEI ≤ 0.67	

Annex A. Copy of the 2016 Database

This annex provides the anonymised television models that were used in the analysis.

Table A.1. High Definition Displays - 2016 Model Database

ID Number	Area (dm²)	Watts	EEI	Energy class	Specific Power
ID#001	27.35	37.00	1.00	Α	1.35
ID#002	27.35	37.00	1.00	А	1.35
ID#003	27.35	41.00	1.11	А	1.50
ID#004	27.35	40.00	1.08	А	1.46
ID#005	27.35	40.00	1.08	А	1.46
ID#006	27.35	41.00	1.11	А	1.50
ID#007	27.35	40.00	1.08	A	1.46
ID#008	27.35	31.00	0.82	A+	1.13
ID#009	27.35	31.00	0.82	A+	1.13
ID#010	27.35	40.00	1.08	А	1.46
ID#011	27.35	40.00	1.08	А	1.46
ID#012	27.35	31.00	0.82	A+	1.13
ID#013	27.35	31.00	0.82	A+	1.13
ID#014	27.35	40.00	1.08	А	1.46
ID#015	27.35	40.00	1.08	А	1.46
ID#016	27.35	40.00	1.08	А	1.46
ID#017	27.35	36.00	0.97	А	1.32
ID#018	41.04	44.00	0.85	A+	1.07
ID#019	48.01	51.00	0.86	A+	1.06
ID#020	48.01	52.00	0.88	A+	1.08
ID#021	48.01	52.00	0.88	A+	1.08
ID#022	48.01	52.00	0.88	A+	1.08
ID#023	48.01	52.00	0.88	A+	1.08
ID#024	60.51	64.00	0.90	A+	1.06
ID#025	60.51	54.00	0.75	A+	0.89
ID#026	60.51	54.00	0.75	A+	0.89
ID#027	60.51	54.00	0.75	A+	0.89
ID#028	60.51	55.00	0.77	A+	0.91
ID#029	67.84	68.00	0.86	A+	1.00
ID#030	67.84	51.00	0.64	A+	0.75
ID#031	67.84	51.00	0.64	A+	0.75
ID#032	82.56	85.00	0.92	A+	1.03
ID#033	82.56	85.00	0.92	A+	1.03
ID#034	82.56	85.00	0.92	A+	1.03
ID#035	82.56	66.00	0.71	A+	0.80
ID#036	82.56	63.00	0.68	A+	0.76
ID#037	64.65	67.00	0.89	A+	1.04
ID#038	97.43	85.00	0.81	A+	0.87
ID#039	97.43	85.00	0.81	A+	0.87
ID#040	67.84	63.00	0.80	A+	0.93
ID#041	41.04	52.00	1.01	Α	1.27
ID#042	67.84	63.00	0.80	A+	0.93
ID#043	67.84	63.00	0.80	A+	0.93
ID#044	82.56	72.00	0.78	A+	0.87
ID#045	82.56	72.00	0.78	A+	0.87
ID#046	64.65	67.00	0.89	A+	1.04
ID#047	64.65	67.00	0.89	A+	1.04
ID#048	64.65	38.00	0.49	Α	0.59
ID#049	66.77	51.00	0.65	A+	0.76
ID#050	27.35	36.00	0.97	Α	1.32
ID#051	48.01	51.00	0.86	A+	1.06

ID Number	Area (dm²)	Watts	EEI	Energy class	Specific Power
ID#052	48.01	51.00	0.86	A+	1.06
ID#053	27.35	40.00	1.08	Α	1.46
ID#054	48.01	52.00	0.88	A+	1.08
ID#055	67.84	63.00	0.80	A+	0.93
ID#056	82.56	72.00	0.78	A+	0.87
ID#057	20.94	25.00	0.81	A+	1.19
ID#058	12.93	21.00	0.97	Α	1.62
ID#059	20.94	25.00	0.81	A+	1.19
ID#060	27.35	40.00	1.08	Α	1.46
ID#061	27.35	31.00	0.82	A+	1.13
ID#062	27.35	31.00	0.82	A+	1.13
ID#063	27.35	40.00	1.08	A	1.46
ID#064	27.35	40.00	1.08	A	1.46
ID#065	41.04	52.00	1.01	A	1.27
ID#066	41.04	52.00	1.01	A	1.27
ID#067	60.51	52.00	0.72	A+	0.86
ID#068	60.51	54.00	0.75	A+	0.89
ID#069	60.51	54.00	0.75	A+	0.89
ID#070	67.84	63.00	0.80	A+	0.83
ID#071	82.56	72.00	0.78	A+	0.93
ID#071					
	97.43	69.00	0.65	A++	0.71
ID#073	97.43	69.00	0.65	A++	0.71
ID#074	27.35	38.00	1.02	A	1.39
ID#075	27.35	38.00	1.02	A	1.39
ID#076	42.73	45.00	0.84	A+	1.05
ID#077	42.73	45.00	0.84	A+	1.05
ID#078	49.84	52.00	0.85	A+	1.04
ID#079	49.84	52.00	0.85	A+	1.04
ID#080	64.65	54.00	0.71	A+	0.84
ID#081	64.65	54.00	0.71	A+	0.84
ID#082	82.56	65.00	0.70	A+	0.79
ID#083	82.56	65.00	0.70	A+	0.79
ID#084	27.35	39.00	1.05	Α	1.43
ID#085	48.01	46.00	0.78	A+	0.96
ID#086	67.84	69.00	0.88	A+	1.02
ID#087	82.56	65.00	0.70	A+	0.79
ID#088	27.35	39.00	1.05	Α	1.43
ID#089	48.01	46.00	0.78	A+	0.96
ID#090	67.84	69.00	0.88	A+	1.02
ID#091	82.56	65.00	0.70	A+	0.79
ID#092	27.35	38.00	1.02	Α	1.39
ID#093	42.73	45.00	0.84	A+	1.05
ID#094	49.84	52.00	0.85	A+	1.04
ID#095	64.65	54.00	0.71	A+	0.84
ID#096	82.56	65.00	0.70	A+	0.79
ID#097	60.51	55.00	0.77	A+	0.91
ID#098	48.01	49.00	0.83	A+	1.02
ID#099	81.37	106.00	1.17	Α	1.30
ID#100	48.01	47.00	0.79	A+	0.98
ID#101	60.51	53.00	0.74	A+	0.88
ID#102	82.56	65.00	0.70	A+	0.79
ID#103	41.04	45.00	0.87	A+	1.10
ID#104	48.01	49.00	0.83	A+	1.02
ID#105	67.84	65.00	0.83	A+	0.96
ID#106	82.56	64.00	0.69	A+	0.78
ID#107	97.43	69.00	0.65	A++	0.71
ID#107	133.87	132.00	1.01	A+	0.99
ID#108	27.35	38.00	1.02	A A	1.39
ID#110	48.01	49.00	0.83	A+	1.02
ID#TI0	40.01	45.00	0.63	МТ	1.02

ID Number	Area (dm²)	Watts	EEI	Energy class	Specific Power
ID#111	60.51	55.00	0.77	A+	0.91
ID#112	82.56	64.00	0.69	A+	0.78
ID#113	48.01	46.00	0.78	A+	0.96
ID#114	48.01	46.00	0.78	A+	0.96
ID#115	48.01	46.00	0.78	A+	0.96
ID#116	60.51	48.00	0.66	A+	0.79
ID#117	60.51	48.00	0.66	A+	0.79
ID#118	60.51	48.00	0.66	A+	0.79
ID#119	82.56	66.00	0.71	A+	0.80
ID#120	82.56	66.00	0.71	A+	0.80
ID#121	48.01	46.00	0.78	A+	0.96
ID#121	60.51	48.00	0.66	A+	0.79
ID#123	82.56	66.00	0.71	A+	0.80
ID#123	48.01	46.00	0.71	A+	0.96
		46.00			
ID#125	48.01		0.78	A+	0.96
ID#126	60.51	48.00	0.66	A+	0.79
ID#127	60.51	48.00	0.66	A+	0.79
ID#128	82.56	66.00	0.71	A+	0.80
ID#129	82.56	66.00	0.71	A+	0.80
ID#130	97.43	62.00	0.59	A++	0.64
ID#131	114.93	69.00	0.58	A++	0.60
ID#132	64.65	50.00	0.66	A+	0.77
ID#133	97.43	63.00	0.59	A++	0.65
ID#134	64.65	50.00	0.66	A+	0.77
ID#135	82.56	63.00	0.68	A+	0.76
ID#136	97.43	63.00	0.59	A++	0.65
ID#137	82.56	64.00	0.69	A+	0.78
ID#138	27.35	40.00	1.08	Α	1.46
ID#139	42.73	49.00	0.92	Α	1.15
ID#140	49.84	51.00	0.84	A+	1.02
ID#141	64.65	53.00	0.70	A+	0.82
ID#142	82.56	60.00	0.65	A++	0.73
ID#143	49.84	36.00	0.58	A++	0.72
ID#144	64.65	43.00	0.56	A++	0.67
ID#145	64.65	51.00	0.67	A+	0.79
ID#146	82.56	60.00	0.65	A++	0.73
ID#147	97.43	93.00	0.89	A+	0.95
ID#148	12.93	16.00	0.71	A+	1.24
ID#149	20.94	23.00	0.74	A+	1.10
ID#150	27.35	35.00	0.94	А	1.28
ID#151	48.01	52.00	0.88	A+	1.08
ID#152	12.93	16.00	0.71	A+	1.24
ID#153	20.94	23.00	0.74	A+	1.10
ID#154	27.35	35.00	0.94	А	1.28
ID#155	48.01	52.00	0.88	A+	1.08
ID#156	48.01	52.00	0.88	A+	1.08
ID#157	12.93	16.00	0.71	A+	1.24
ID#158	20.94	19.00	0.60	A+	0.91
ID#159	64.65	53.00	0.70	A+	0.82
ID#160	82.56	60.00	0.65	A++	0.73
ID#161	97.43	93.00	0.89	A+	0.95
ID#161	48.01	52.00	0.88	A+	1.08
ID#163	49.84	51.00	0.84	A+	1.02
ID#164	114.93	80.00	0.67	A++	0.70
ID#165	27.35	35.00	0.87		1.28
	+			A	
ID#166	48.01	52.00	0.88	A+	1.08
ID#167	27.35	35.00	0.94	A	1.28
ID#168	49.84	51.00	0.84	A+	1.02
ID#169	49.84	51.00	0.84	A+	1.02

ID Number	Area (dm²)	Watts	EEI	Energy class	Specific Power
ID#170	49.84	51.00	0.84	A+	1.02
ID#171	27.35	25.00	0.65	A+	0.91
ID#172	27.35	25.00	0.65	A+	0.91
ID#173	49.84	51.00	0.84	A+	1.02
ID#174	27.35	35.00	0.94	Α	1.28
ID#175	27.35	35.00	0.94	А	1.28
ID#176	12.93	22.00	1.02	Α	1.70
ID#177	20.94	31.00	1.02	Α	1.48
ID#178	27.35	41.00	1.11	Α	1.50
ID#179	48.01	55.00	0.93	Α	1.15
ID#180	27.35	41.00	1.11	А	1.50
ID#181	48.01	64.00	1.09	А	1.33
ID#182	41.04	51.00	0.99	A	1.24
ID#183	60.51	67.00	0.94	A	1.11
ID#184	12.93	16.00	0.71	A+	1.24
ID#185	20.94	21.00	0.67	A+	1.00
ID#186	27.35	36.00	0.97	A	1.32
ID#187	41.04	56.00	1.09	A	1.36
ID#187	48.01	66.00	1.13	A	1.37
	60.51		0.84	A+	0.99
ID#189		60.00			
ID#190	82.56	84.00	0.91	A+	1.02
ID#191	97.43	79.00	0.75	A+	0.81
ID#192	12.93	16.00	0.71	A+	1.24
ID#193	20.94	21.00	0.67	A+	1.00
ID#194	48.01	66.00	1.13	Α	1.37
ID#195	27.35	36.00	0.97	A	1.32
ID#196	27.35	42.00	1.14	Α	1.54
ID#197	41.04	56.00	1.09	Α	1.36
ID#198	48.01	66.00	1.13	Α	1.37
ID#199	60.51	60.00	0.84	A+	0.99
ID#200	82.56	84.00	0.91	A+	1.02
ID#201	97.43	79.00	0.75	A+	0.81
ID#202	12.93	17.00	0.76	A+	1.32
ID#203	20.94	21.00	0.67	A+	1.00
ID#204	27.35	41.00	1.11	Α	1.50
ID#205	41.04	50.00	0.97	Α	1.22
ID#206	48.01	51.00	0.86	A+	1.06
ID#207	60.51	54.00	0.75	A+	0.89
ID#208	82.56	70.00	0.76	A+	0.85
ID#209	48.01	58.00	0.99	А	1.21
ID#210	60.51	60.00	0.84	A+	0.99
ID#211	82.56	77.00	0.83	A+	0.93
ID#212	97.43	79.00	0.75	A+	0.81
ID#213	12.93	17.00	0.76	A+	1.32
ID#214	20.94	21.00	0.67	A+	1.00
ID#215	27.35	41.00	1.11	A	1.50
ID#216	41.04	51.00	0.99	A	1.24
ID#217	48.01	55.00	0.93	A	1.15
ID#218	60.51	67.00	0.94	A	1.11
ID#219	82.56	87.00	0.95	A	1.05
ID#219	27.35	41.00	1.11	A	1.50
ID#220	41.04	58.00	1.13	A	1.41
ID#221	48.01	64.00	1.09	A	1.33
ID#223	60.51	62.00	0.87	A+	1.33
ID#224	82.56	85.00	0.92	A+	1.03
ID#225	48.01	49.00	0.83	A+	1.02
ID#226	60.51	49.00	0.68	A+	0.81
ID#227	82.56	68.00	0.73	A+	0.82
ID#228	97.43	70.00	0.66	A++	0.72

ID Number	Area (dm²)	Watts	EEI	Energy class	Specific Power
ID#229	28.04	44.00	1.17	A	1.57
ID#230	44.46	61.00	1.11	А	1.37
ID#231	44.46	61.00	1.11	Α	1.37
ID#232	27.35	34.00	0.91	Α	1.24
ID#233	15.90	20.00	0.79	Α	1.26
ID#234	81.37	87.00	0.96	A	1.07
ID#235	64.65	73.00	0.97	A	1.13
ID#236	81.37	68.00	0.74	A+	0.84
ID#237	64.65	64.00	0.85	A+	0.99
ID#238	27.35	40.00	1.08	A	1.46
ID#239	81.37	68.00	0.74	A+	0.84
ID#240	64.65	64.00	0.85	A+	0.99
ID#241	43.59	54.00	1.00	A	1.24
ID#242	98.72	70.00	0.66	A++	0.71
ID#243	66.77	71.00	0.92	A+	1.06
ID#244	81.37	75.00	0.82	A+	0.92
ID#245	64.65	64.00	0.85	A+	0.99
ID#246	81.37	66.00	0.72	A+	0.81
ID#247	43.59	55.00	1.02	A	1.26
ID#248	27.35	40.00	1.02	A	1.46
ID#248	43.59	48.00	0.88	A+	1.10
ID#250	43.59	48.00	0.88		
	27.35		0.88	A+ A+	1.10
ID#251		26.00			0.95
ID#252	27.35	26.00	0.68	A+	0.95
ID#253	176.09	174.00	1.13	A+	0.99
ID#254	133.87	135.00	1.03	A+	1.01
ID#255	98.72	109.00	1.03	A+	1.10
ID#256	98.72	100.00	0.95	A+	1.01
ID#257	98.72	100.00	0.95	A+	1.01
ID#258	67.84	70.00	0.89	A+	1.03
ID#259	67.84	70.00	0.89	A+	1.03
ID#260	67.84	83.00	1.06	A	1.22
ID#261	58.49	46.00	0.65	A	0.79
ID#262	50.77	46.00	0.74	A+	0.91
ID#263	48.01	49.00	0.83	A+	1.02
ID#264	48.92	68.00	1.14	A	1.39
ID#265	48.92	68.00	1.14	A	1.39
ID#266	27.35	35.00	0.94	A	1.28
ID#267	44.46	48.00	0.87	A+	1.08
ID#268	62.56	58.00	0.79	A+	0.93
ID#269	49.84	55.00	0.90	A+	1.10
ID#270	67.84	72.00	0.92	A+	1.06
ID#271	67.84	72.00	0.92	A+	1.06
ID#272	67.84	72.00	0.92	A+	1.06
ID#273	82.56	75.00	0.81	A+	0.91
ID#274	82.56	75.00	0.81	A+	0.91
ID#275	114.93	123.00	1.04	A+	1.07
ID#276	49.84	55.00	0.90	A+	1.10
ID#277	27.35	38.00	1.02	A+	1.39
ID#278	44.46	44.00	0.79	A+	0.99
ID#279	62.56	46.00	0.62	A++	0.74
ID#280	44.46	43.00	0.77	A+	0.97
ID#281	62.56	46.00	0.62	A++	0.74
ID#282	27.35	31.00	0.82	A+	1.13
ID#283	82.56	103.00	1.12	A	1.25
ID#284	44.46	48.00	0.87	A+	1.08
ID#285	44.46	45.00	0.81	A+	1.01
ID#286	27.35	35.00	0.94	A	1.28
ID#287	83.75	74.00	0.79	A+	0.88

ID Number	Area (dm²)	Watts	EEI	Energy class	Specific Power
ID#288	83.75	74.00	0.79	A+	0.88
ID#289	28.04	31.00	0.81	A+	1.11
ID#290	21.54	22.00	0.69	A+	1.02
ID#291	21.54	22.00	0.69	A+	1.02
ID#292	15.90	25.00	1.01	А	1.57
ID#293	15.90	25.00	1.01	А	1.57
ID#294	28.04	25.00	0.64	A+	0.89
ID#295	28.04	25.00	0.64	A+	0.89
ID#296	28.04	25.00	0.64	A+	0.89
ID#297	28.04	25.00	0.64	A+	0.89
ID#298	28.04	25.00	0.64	A+	0.89
ID#299	83.75	86.00	0.92	A+	1.03
ID#300	27.35	31.00	0.82	A+	1.13
ID#301	27.35	30.00	0.80	A+	1.10
ID#302	15.90	18.00	0.70	A+	1.13
ID#303	44.46	46.00	0.83	A+	1.03
ID#304	12.93	20.00	0.91	А	1.55

Table A.2. Ultra High Definition Displays - 2016 Model Database

ID Number	Area (dm²)	Watts	EEI	Energy class	Specific Power
ID#305	82.559	134.00	1.47	В	1.623
ID#306	83.751	142.00	1.54	А	1.696
ID#307	91.083	68.00	0.68	А	0.747
ID#308	92.335	68.00	0.67	Α	0.736
ID#309	93.596	68.00	0.66	А	0.727
ID#310	94.865	68.00	0.66	A	0.717
ID#311	96.142	67.00	0.64	A+	0.697
ID#312	97.429	67.00	0.63	A+	0.688
ID#313	98.723	67.00	0.63	A+	0.679
ID#313	100.027	67.00	0.62	A+	0.670
ID#315	101.338	84.00	0.78	A+	0.829
ID#316	102.659	84.00	0.77	A+	0.818
ID#317	103.988	84.00	0.76	A+	0.808
ID#317	105.325	84.00	0.75		0.798
				A+	
ID#319	106.671	100.00	0.89	A+	0.937
ID#320	108.026	100.00	0.88	A+	0.926
ID#321	109.389	100.00	0.88	A+	0.914
ID#322	110.760	100.00	0.87	A+	0.903
ID#323	112.141	116.00	1.00	A+	1.034
ID#324	113.529	116.00	0.99	A+	1.022
ID#325	114.927	116.00	0.98	A+	1.009
ID#326	116.332	116.00	0.97	A+	0.997
ID#327	117.747	129.00	1.07	A+	1.096
ID#328	82.559	85.00	0.92	A+	1.030
ID#329	64.646	57.00	0.75	A+	0.882
ID#330	114.927	77.00	0.65	A++	0.670
ID#331	42.730	41.00	0.76	A+	0.960
ID#332	64.646	84.00	1.12	Α	1.299
ID#333	97.429	98.00	0.94	A+	1.006
ID#334	114.927	114.00	0.96	A+	0.992
ID#335	64.646	57.00	0.75	A+	0.882
ID#336	64.646	57.00	0.75	A+	0.882
ID#337	64.646	57.00	0.75	A+	0.882
ID#338	49.840	52.00	0.85	A+	1.043
ID#339	49.840	52.00	0.85	A+	1.043
ID#340	49.840	52.00	0.85	A+	1.043
ID#341	82.559	76.00	0.82	A+	0.921
ID#342	82.559	76.00	0.82	A+	0.921
ID#343	82.559	76.00	0.82	A+	0.921
ID#344	82.559	76.00	0.82	A+	0.921
ID#345	97.429	69.00	0.65	A++	0.708
ID#346	49.840	51.00	0.84	A+	1.023
ID#347	64.646	66.00	0.87	A+	1.021
ID#347	82.559	73.00	0.79	A+	0.884
ID#348	114.927	76.00	0.64	A++	0.661
ID#349	114.927	76.00	0.64	A++	0.661
ID#350 ID#351	82.559	106.00	1.16	A++ A	1.284
ID#351	114.927	110.00	0.93		0.957
	91.083	87.00	0.93	A+ ^+	0.957
ID#353				A+	
ID#354	67.838	66.00	0.84	A+	0.973
ID#355	152.636	178.00	1.26	A	1.166
ID#356	152.636	178.00	1.26	Α	1.166
ID#357	114.927	76.00	0.64	A++	0.661
ID#358	114.927	76.00	0.64	A++	0.661
ID#359	49.840	52.00	0.85	A+	1.043
ID#360	201.211	187.00	1.14	A+	0.929
ID#361	48.011	58.00	0.99	Α	1.208

ID Number	Area (dm²)	Watts	EEI	Energy class	Specific Power
ID#362	82.559	108.00	1.18	Α	1.308
ID#363	82.559	108.00	1.18	Α	1.308
ID#364	42.730	60.00	1.13	А	1.404
ID#365	64.646	87.00	1.16	А	1.346
ID#366	82.559	108.00	1.18	А	1.308
ID#367	64.646	87.00	1.16	Α	1.346
ID#368	64.646	87.00	1.16	Α	1.346
ID#369	64.646	78.00	1.04	Α	1.207
ID#370	82.559	85.00	0.92	A+	1.030
ID#371	97.429	97.00	0.93	A+	0.996
ID#372	114.927	106.00	0.90	A+	0.922
ID#373	133.869	134.00	1.02	A+	1.001
ID#374	49.840	53.00	0.87	A+	1.063
ID#375	49.840	53.00	0.87	A+	1.063
ID#376	49.840	53.00	0.87	A+	1.063
ID#377	82.559	78.00	0.85	A+	0.945
ID#378	81.375	78.00	0.86	A+	0.959
ID#379	114.927	73.00	0.61	A++	0.635
ID#380	114.927	73.00	0.61	A++	0.635
ID#381	82.559	145.00	1.59	В	1.756
ID#382	82.559	145.00	1.59	В	1.756
ID#383	114.927	145.00	1.23	Α	1.262
ID#384	82.559	145.00	1.59	В	1.756
ID#385	82.559	145.00	1.59	В	1.756
ID#386	114.927	145.00	1.23	Α	1.262
ID#387	114.927	145.00	1.23	Α	1.262
ID#388	114.927	145.00	1.23	Α	1.262
ID#389	64.646	63.00	0.83	A+	0.975
ID#390	64.646	63.00	0.83	A+	0.975
ID#391	114.927	145.00	1.23	Α	1.262
ID#392	114.927	145.00	1.23	Α	1.262
ID#393	82.559	145.00	1.59	В	1.756
ID#394	82.559	145.00	1.59	В	1.756
ID#395	82.559	145.00	1.59	В	1.756
ID#396	114.927	145.00	1.23	Α	1.262
ID#397	114.927	145.00	1.23	Α	1.262
ID#398	114.927	145.00	1.23	Α	1.262
ID#399	64.646	66.00	0.87	A+	1.021
ID#400	64.646	66.00	0.87	A+	1.021
ID#401	64.646	66.00	0.87	A+	1.021
ID#402	64.646	66.00	0.87	A+	1.021
ID#403	64.646	66.00	0.87	A+	1.021
ID#404	64.646	66.00	0.87	A+	1.021
ID#405	82.559	80.00	0.87	A+	0.969
ID#406	82.559	80.00	0.87	A+	0.969
ID#407	82.559	80.00	0.87	A+	0.969
ID#408	82.559	80.00	0.87	A+	0.969
ID#409	82.559	80.00	0.87	A+	0.969
ID#410	82.559	80.00	0.87	A+	0.969
ID#411	97.429	100.00	0.96	A+	1.026
ID#412	97.429	100.00	0.96	A+	1.026
ID#413	97.429	100.00	0.96	A+	1.026
ID#414	97.429	100.00	0.96	A+	1.026
ID#415	97.429	100.00	0.96	A+	1.026
ID#416	97.429	100.00	0.96	A+	1.026
ID#417	114.927	116.00	0.98	A+	1.009
ID#418	114.927	116.00	0.98	A+	1.009
ID#419	114.927	116.00	0.98	A+	1.009
ID#420	114.927	116.00	0.98	A+	1.009

ID Number	Area (dm²)	Watts	EEI	Energy class	Specific Power
ID#421	114.927	116.00	0.98	A+	1.009
ID#422	114.927	116.00	0.98	A+	1.009
ID#423	82.559	84.00	0.91	A+	1.017
ID#424	64.646	88.00	1.17	Α	1.361
ID#425	64.646	68.00	0.90	A+	1.052
ID#426	114.927	116.00	0.98	A+	1.009
ID#427	97.429	100.00	0.96	A+	1.026
ID#428	82.559	84.00	0.91	A+	1.017
ID#429	64.646	67.00	0.89	A+	1.036
ID#430	49.840	68.00	1.13	А	1.364
ID#431	49.840	65.00	1.08	А	1.304
ID#432	42.730	60.00	1.13	А	1.404
ID#433	42.730	60.00	1.13	А	1.404
ID#434	42.730	60.00	1.13	А	1.404
ID#435	42.730	60.00	1.13	Α	1.404
ID#436	42.730	60.00	1.13	Α	1.404
ID#437	82.559	110.00	1.20	Α	1.332
ID#438	114.927	127.00	1.08	Α	1.105
ID#439	64.646	123.00	1.65	В	1.903
ID#440	82.559	111.00	1.21	A	1.344
ID#441	82.559	106.00	1.16	A	1.284
ID#442	114.927	152.00	1.29	A	1.323
ID#443	170.920	169.00	1.12	A+	0.989
ID#444	193.862	251.00	1.56	A	1.295
ID#445	114.927	127.00	1.08	A	1.105
ID#446	83.751	149.00	1.62	В	1.779
ID#447	199.361	378.00	2.33	В	1.896
ID#448	152.636	252.00	1.78	В	1.651
ID#449	44.456	81.00	1.49	В	1.822
ID#450	63.599	106.00	1.44	В	1.667
ID#451	83.751	152.00	1.65	В	1.815
ID#452	44.456	79.00	1.45	В	1.777
ID#453	63.599	104.00	1.41	В	1.635
ID#454	83.751	150.00	1.63	В	1.791
ID#455	83.751	159.00	1.73	В	1.898
ID#456	64.646	84.00	1.12	A	1.299
ID#457	82.559	115.00	1.12	A	1.393
ID#458	82.559	115.00	1.26	A	1.393
ID#458	64.646	84.00	1.12		1.299
ID#459	42.730	68.00	1.12	А В	1.591
ID#461	114.927	214.00	1.83	В	1.862
ID#461	114.927	226.00	1.93	В	1.966
ID#462	91.083	183.00	1.86	В	2.009
ID#463	91.083	113.00	1.14		1.241
		+	•	A	
ID#465	67.838 114.927	82.00 159.00	1.05 1.35	A	1.209
ID#466				Α	1.383
ID#467	91.083	109.00	1.10	Α	1.197 1.297
ID#468	67.838	88.00	1.13	A	1.297
ID#469	42.730	84.00	1.60	В	
ID#470	114.927	105.00	0.89	A+	0.914
ID#471	114.927	121.00	1.02	A	1.053
ID#472	82.559	97.00	1.06	Α	1.175
ID#473	82.559	97.00	1.06	A	1.175
ID#474	82.559	105.00	1.15	A	1.272
ID#475	82.559	105.00	1.15	A	1.272
ID#476	82.559	105.00	1.15	A	1.272
ID#477	82.559	91.00	0.99	A	1.102
ID#478	64.646	89.00	1.19	A	1.377
ID#479	64.646	89.00	1.19	Α	1.377

ID Number	Area (dm²)	Watts	EEI	Energy class	Specific Power
ID#480	64.646	99.00	1.32	В	1.531
ID#481	64.646	99.00	1.32	В	1.531
ID#482	64.646	99.00	1.32	В	1.531
ID#483	64.646	87.00	1.16	Α	1.346
ID#484	49.840	77.00	1.28	В	1.545
ID#485	114.927	124.00	1.05	A+	1.079
ID#486	49.840	65.00	1.08	Α	1.304
ID#487	113.529	153.00	1.31	A	1.348
ID#488	113.529	118.00	1.01	A+	1.039
ID#489	81.375	111.00	1.23	Α	1.364
ID#490	64.646	89.00	1.19	A	1.377
ID#491	49.840	70.00	1.16	Α	1.404
ID#492	132.360	177.00	1.37	А	1.337
ID#493	43.589	62.00	1.15	Α	1.422
ID#494	66.766	93.00	1.21	Α	1.393
ID#495	81.375	111.00	1.23	А	1.364
ID#496	212.492	280.00	1.68	Α	1.318
ID#497	167.519	221.00	1.48	Α	1.319
ID#498	167.519	170.00	1.14	A+	1.015
ID#499	113.529	118.00	1.01	A+	1.039
ID#500	81.375	85.00	0.93	A+	1.045
ID#501	64.646	84.00	1.12	А	1.299
ID#502	152.636	156.00	1.10	A+	1.022
ID#503	113.529	118.00	1.01	A+	1.039
ID#504	81.375	85.00	0.93	A+	1.045
ID#505	64.646	84.00	1.12	Α	1.299
ID#506	49.840	70.00	1.16	Α	1.404
ID#507	64.646	89.00	1.19	Α	1.377
ID#508	81.375	111.00	1.23	Α	1.364
ID#509	113.529	118.00	1.01	A+	1.039
ID#510	43.589	62.00	1.15	Α	1.422
ID#511	113.529	118.00	1.01	A+	1.039
ID#512	98.723	102.00	0.97	A+	1.033
ID#513	81.375	85.00	0.93	A+	1.045
ID#514	64.646	84.00	1.12	Α	1.299
ID#515	64.646	89.00	1.19	Α	1.377
ID#516	81.375	111.00	1.23	Α	1.364
ID#517	49.840	70.00	1.16	Α	1.404
ID#518	64.646	89.00	1.19	Α	1.377
ID#519	81.375	111.00	1.23	Α	1.364
ID#520	43.589	62.00	1.15	Α	1.422
ID#521	66.766	93.00	1.21	Α	1.393
ID#522	81.375	85.00	0.93	A+	1.045
ID#523	98.723	99.00	0.94	A+	1.003
ID#524	113.529	118.00	1.01	A+	1.039
ID#525	81.375	111.00	1.23	Α	1.364
ID#526	64.646	89.00	1.19	Α	1.377
ID#527	113.529	153.00	1.31	Α	1.348
ID#528	81.375	111.00	1.23	Α	1.364
ID#529	64.646	89.00	1.19	A	1.377
ID#530	82.559	166.00	1.83	В	2.011
ID#531	114.927	192.00	1.64	В	1.671
ID#532	154.255	299.00	2.10	В	1.938
ID#533	114.927	210.00	1.79	В	1.827
ID#534	152.636	259.00	1.83	В	1.697
ID#535	273.510	413.00	2.29	В	1.510
ID#536	82.559	112.00	1.22	Α	1.357
ID#537	114.927	171.00	1.46	A+	1.488
ID#538	49.840	82.00	1.37	В	1.645

ID Number	Area (dm²)	Watts	EEI	Energy class	Specific Power
ID#539	64.646	80.00	1.06	Α	1.238
ID#540	49.840	82.00	1.37	В	1.645
ID#541	64.646	80.00	1.06	Α	1.238
ID#542	49.840	82.00	1.37	В	1.645
ID#543	82.559	93.00	1.01	Α	1.126
ID#544	82.559	115.00	1.26	Α	1.393
ID#545	114.927	149.00	1.27	А	1.296
ID#546	114.927	149.00	1.27	Α	1.296
ID#547	82.559	115.00	1.26	Α	1.393
ID#548	82.559	115.00	1.26	Α	1.393
ID#549	67.838	92.00	1.18	Α	1.356
ID#550	154.255	147.00	1.03	A+	0.953
ID#551	197.519	168.00	1.03	A+	0.851
ID#552	82.559	103.00	1.12	Α	1.248
ID#553	114.927	149.00	1.27	Α	1.296
ID#554	154.255	202.00	1.42	Α	1.310
ID#555	114.927	167.00	1.42	В	1.453
ID#556	82.559	134.00	1.47	В	1.623
ID#557	83.751	105.00	1.13	A+	1.254
ID#558	116.332	88.00	0.73	A+	0.756
ID#559	83.751	74.00	0.79	A+	0.884
ID#560	83.751	112.00	1.21	А	1.337
ID#561	116.332	88.00	0.73	A+	0.756
ID#562	116.332	88.00	0.73	A+	0.756
ID#563	68.919	80.00	1.01	А	1.161
ID#564	83.751	85.00	0.91	A+	1.015
ID#565	83.751	85.00	0.91	A+	1.015
ID#566	44.456	62.00	1.13	Α	1.395
ID#567	116.332	88.00	0.73	A+	0.756
ID#568	83.751	74.00	0.79	A+	0.884
ID#569	83.751	85.00	0.91	A+	1.015
ID#570	116.332	88.00	0.73	A+	0.756
ID#571	68.919	80.00	1.01	Α	1.161
ID#572	68.919	80.00	1.01	А	1.161
ID#573	83.751	74.00	0.79	A+	0.884
ID#574	68.919	93.00	1.18	A+	1.349
ID#575	68.919	68.00	0.85	A+	0.987
ID#576	83.751	86.00	0.92	A+	1.027
ID#577	44.456	63.00	1.15	Α	1.417
ID#578	62.561	87.00	1.19	A	1.391