Part II - Methodology

1. Introduction

The remainder of this document provides the details of the BUENAS methodology and data sources. It is intended for a technical audience and assumes some familiarity with the parameters used in energy demand and policy modeling. The structure of the document progresses "backwards" from end product to basic inputs, beginning in Section 2 with the definitions of the main outputs of the model, in the form of equations. The mathematical flow of the model is then mapped to a set of modules and key data inputs in Section 3. The mechanics of key modeling components are described in Section 4, and a description of the construction of scenarios is given in section 5.

While the document provides sufficient detail to trace the calculation of energy demand for all end uses, countries and scenarios, two types of data are omitted. First, some details already described in [3] and [4] are omitted and these references are cited instead. Second, many of the actual data streams are not provided in the document, but in the accompanying *BUENAS Inputs Spreadsheet*, an Excel file developed as a container and documentation tool for important data streams and assumptions in BUENAS. Some of the tables of inputs and references that appear here are generated from the BUENAS Inputs Spreadsheet directly. The structure of the spreadsheet file with a description of each sheet, is provided as an Appendix.

The original version of BUENAS was built as a database using Microsoft Access, with intermediate outputs and final results presented using Excel pivot tables. A major part of the preparation for peer review of the model involved porting the model to a more optimal platform. The most important features sought in a new software platform were:

- <u>Transparency</u> All parameters and assumptions should be made easily visible to the reviewer;
- <u>Portability</u> The model should be available in a single package not requiring integration of separate programs;
- <u>User Interface</u> The user should easily be able to view tables and graphs of results, intermediate outputs and input variables.

The platform chosen for this peer review and subsequent versions of BUENAS is the Long Range Energy Alternatives Planning model (LEAP). LEAP is an integrated energy-environment modeling tool designed and disseminated by the Stockholm Environment Institute. It is an accounting model that relies on inputs of end use activity and intensity, but performs stock accounting and scenario structure given technology lifetime distributions. It provides a wide range of easy to understand tables and graphs well-suited to the needs of energy model developers. Finally, LEAP has a wide and growing community of users around the world and is increasingly becoming a standard platform for energy demand projection. Use of LEAP requires a moderate license fee for users in industrialized countries. It is provided free of charge for developing country users⁷.

2. **BUENAS Equations**

The two main outputs of BUENAS are national-level final energy savings and carbon dioxide emissions mitigation. Final energy (electricity or fuel) savings is important because final energy demand is the driver of capital-intensive generation capacity additions and fuel imports. Final energy demand is also the quantity directly paid for by consumers. Carbon dioxide forms the majority of greenhouse gas emissions and is therefore the most important environmental impact of energy consumption. Reducing these emissions is a primary goal of energy efficiency policy in the era of climate change. The current version does *not* calculate financial impacts of efficiency policy due to the data requirements needed to include them. However, financial impacts will be included in the next version of the model. Primary energy inputs to electricity are also not considered, although carbon emissions are a rough proxy for them.

The following equations are implemented in LEAP to produce emissions mitigation and final energy savings results.

Emissions Mitigation

BUENAS calculates carbon dioxide mitigation from final energy savings:

$$\Delta CO_2(y) = \Delta E(y) \times f_c(y)$$

- $\Delta CO_2(y) = CO_2$ mitigation in year y
- $\Delta E(y)$ =Final Energy Savings in year y
- f_c =carbon conversion factor (kg/kWh or kg/GJ) in year y

Final Energy Savings

BUENAS calculates final energy savings (electricity or fuel) by comparing *Efficiency Case (EFF)* energy demand and *Business as Usual (BAU)* energy demand:

$$\Delta E(y) = E_{BAU}(y) - E_{EFF}(y)$$

- E = final energy demand
- 2.1. Residential Sector Activity Equations

⁷ For more information on LEAP, visit http://www.sei-us.org/software/leap.html

BUENAS calculates final energy demand according to unit energy consumption of equipment sold in previous years:

$$E_{BAU} = \sum_{age} Sales(y-age) \times UEC_{BAU}(y-age) \times Surv(age)$$

- *Sales* (*y*) = unit sales (shipments) in year *y*
- *UEC*(*y*) = unit energy consumption of units sold in year *y*
- *Surv(age)*=probability of surviving to *age* years

Stock Turnover (mostly done by LEAP)

When unit sales (shipments) are not given as direct data inputs then BUENAS derives them from increases in stock and replacements:

$$Sales(y) = Stock(y) - Stock(y - 1) + \sum_{age} Ret(age) \times Sales(y - age)$$

- *Stock* (*y*) = Number of units in operation in year *y*
- *Ret(age)* = probability that a unit will retire (and be replaced) at a certain age

Survival function and retirement function are related by:

$$Surv(age) = 1 - \sum_{age} Ret(age)$$

Stock

Stock is rarely given directly as input data. Instead, if sales data are not available, BUENAS uses appliance diffusion (ownership) rates:

$$Stock(y) = Diffusion(y) \times HH(y)$$

- Diffusion(y) = Number of units (owned and used) per household in year y
- HH(y) = Number of households in year y.

In turn, diffusion rates are generally not given by input data, but are projected according to a macroeconomic model:

$$Diffusion(y) = \frac{a}{1 + \gamma \times exp(\beta_1 \times I(y) + \beta_2 \times U(y) + \beta_3 \times E(y))}$$

- I(y)=household income (*GDP* per household) in year (y)
- U(y)=urbanization rate in year (y)
- *Elec*(*y*) = electrification rate in year (y)
- $\alpha, \gamma, \beta_1, \beta_2, \beta_3$ = model parameters (described in [4])

2.2. Commercial Sector Activity Equations

Sales data are scarce for most commercial end uses. In this sector, BUENAS models commercial floor area and end use intensity, since these data are more readily available from national statistics:

$$E_{BAU} = \sum_{age} Turnover(y - age) \times uec_{BAU}(y - age) \times Surv(age)$$

- *Turnover* (*y*)=equipment floor space coverage added or replaced in year *y*.
- *uec* (y) energy intensity (*kWh/m*²) of equipment installed in year y (lower case used to distinguished from unit energy consumption ,UEC).

Turnover is driven by increases in floor space, and replacement of existing equipment occupying floor space.

$$Turnover(y) = F(y) - F(y-1) + \sum_{age} Ret(age) \times Turnover(y-age)$$

• F(y)=total commercial floor space in year y.

When floor space is not given by direct data inputs, it is modeled as the product of two components:

$$F(y) = N_{SSE}(y) \times f(y)$$

In this equation, N_{SSE} is the number of service sector employees and f is the floor space per employee. N_{SSE} is the product of the economically active population P_{EA} and the service sector share SSS:

$$N_{SSE}(y) = P_{EA} \times SSS(y)$$

Floor space per employee is modeled in a similar way to residential appliance diffusion:

$$f(y) = \frac{a}{1 + \gamma \times exp(\beta'' \times i(y))}$$

- i(y) = GDP per capita in year (y)
- $\alpha, \beta', \beta'', \gamma =$ model parameters (described in [18])

2.3. Industrial Sector Activity Equations

When sales data and unit energy consumption are not available for industrial motors, they are modeled as a function of industrial value added GDP:

$$E(y)_{BAU} = GDP(y)_{IND} \times \varepsilon \times p$$

- $GDP(y)_{IND} = GDP$ value added of industrial sector in year (y)
- ε = electricity intensity per unit of industrial GDP⁸
- p = percentage of electricity from electric motors⁹

3. Model Components and Data Flow

Figure 3 shows a flowchart of the BUENAS calculations implemented in the LEAP platform. The equations presented above are presented in the flowchart as flowing from right to left, that is, from final result to data inputs. Some of these equations are implemented in LEAP as user-defined calculations while others are built in as part of the functionality of the platform. In general, LEAP calculates national level energy savings given stock or sales of each equipment type combined with a time series of *marginal final energy intensity*, that is, annual energy consumption of new units entering the stock. Carbon dioxide emissions are calculated from final energy demand using a customized calculation. Activity modeling when not driven directly by a time series of product sales is also implemented with a custom calculation.

Much of the modeling in BUENAS is accomplished by input of data streams into LEAP, which then calculates energy demand using built-in stock accounting functions. The two main inputs provided in this way are (1) product sales or stock time series and (2) unit energy consumption time series.

All data inputs used in the LEAP model are stored in an Excel file called *BUENAS Inputs Spreadsheet.xlsx.* This file serves as a 'database' for the variables used in the model. It also contains documentation regarding the primary sources of these data. Finally, the inputs spreadsheet indicates the model version (by date), which can be correlated to a version of the LEAP database named with the same date. The sheets and areas of this spreadsheet are defined in the Appendix.

The legend of Figure 3 shows the different component type of the models. These are:

- 1. *Data or Assumption* These are direct inputs to the model documented in the *BUENAS Inputs Spreadsheet*. In the case of data from other sources, the reference of the primary data source is listed. In cases where no data are available, assumptions are sometimes made.
- 2. *Calculation* These are computations governed by the equations in the previous section. These are either built in to LEAP, or are user-defined.
- 3. *Data or Calculation* This can be either a direct data input or a calculation. The main example of this is the projection of unit sales. When available, these data are input directly in the model. If no such data are available, sales are modeled from stock as an intermediate

⁸ Industrial GDP - PPP Units - Development Data Group, The World Bank. 2007. 2007 World Development Indicators Online. Washington, DC: The World Bank. Available at: <u>http://go.worldbank.org/3JU2HA60D0</u>. Industrial Electricity Consumption from the International Energy Agency.

⁹ From literature. Sources provided in *BUENAS Inputs Spreadsheet*.

result. Stock in turn can be a direct input or from a model of appliance ownership (diffusion).

Figure 3 – Flowchart of BUENAS Calculation

Note: Stock and Diffusion can be entered directly into the model as data, but this is rare.

The equations and structure of BUENAS are well-established and are relatively stable. Generally they follow widely accepted practices of energy demand calculation and stock turnover analysis¹⁰. Much of the current and future development of BUENAS therefore consists of gathering and refining data inputs. In particular, the scope of the model is currently primarily limited by data availability.

GDP per Capita, Electrification and Urbanization – Macroeconomic parameter data, either historical or forecast, are provided by the World Bank and United Nations agencies, based on data supplied officially from national agencies,

Unit Sales or Stock – The number of units of appliances sold (and in the stock) in each year originate from a number of sources. The most common of these are the models used by countries to evaluate the impacts of their own efficiency programs¹¹. Other sources include industry reports and market research firms. A summary of sources of unit sales or stock data is given in Table 4. The numbers in the table indicate the source of data, as numbered in the references section.

		Country / Economy									
Product	AUS	BRA	CAN	EU	IND	JAP	KOR	MEX	RUS	USA	ZAF
Boilers			[10]	[20]						[21]	
Central Air Conditioners	[7]		[10]					[22]		[23]	
Clothes Dryers										[24]	
Clothes Washers				[25]							
Commercial Clothes Washers										[26]	
Cooking Equipment										[27]	
Direct Heating Equipment										[28]	
Dishwashers				[25]							
Distribution Transformers			[29]		[30]					[29]	
Electric Motors				[31]				[22]			
Fans					[32]					[33]	
Fluorescent Ballasts										[34]	
Freezers				[35]						[36]	
Furnace Fans										[23]	
Furnaces			[10]							[23]	
Lighting				[37]						[38]	
Pool Heater										[39]	
Refrigerators	[40]			[41]				[22]		[36]	
Room Air Conditioners	[7]		[10]	[42]						[43]	
Standby Power				[44]						[45]	
Televisions	[46]	[46]	[46]	[46]	[46]	[46]	[46]	[46]	[46]	[46]	[46]
Washing Machines								[22]			
Water Heaters				[47]				[22]		[48]	

Table 4 – Sources of Unit Sales or Stock Data

Baseline Unit Energy Consumption – Annual energy consumption of appliances arises from a combination of appliance size, efficiency and usage patterns. Like unit sales, this parameter is often

¹⁰ This does not exclude further development of *analysis features*, that. That is inclusion of previously unaccounted for impacts or second order corrections. Some of these are listed in Section 6.

¹¹ The most common of these are the Technical Support Documents used in the development of US federal appliance standards and Preparatory Studies used to support the European Commission's Ecodesign standards.

available from efficiency program studies or from the efficiency metrics definitions of countries with EES&L programs. Estimates and algorithms for UEC are less frequently found in the energy literature. A summary of sources of baseline unit energy consumption data is given in Table 5. Cases where unit energy consumption was generated by assumption are indicated with an 'A'. The numbers in the table indicate the source of data, as numbered in the references section.

	Country / Economy											
Product	AUS	BRA	CAN	EU	IDN	IND	JAP	KOR	MEX	RUS	USA	ZAF
Boilers			[10]	[20]								
Central Air Conditioners	[7]		[10]						[23]		[23]	
Cooking Equipment											[49]	
Cooking Products											[49]	
Direct Heating Equipment											[28]	
Dishwashers				[50]								
Dryers				[51]							[24]	
Fans	[52]	[52]	[52]	[52]	[52]	[52]	[52]	[52]	[52]	[52]	[52]	[52]
Freezers				[53]							[36]	
Furnace Fans			[23]								[23]	
Furnaces			[10]								[23]	
Lighting	[54]		[54]	[55]		[54]	[55]	[55]	[54]	[55]	[54]	
Pool Heater											[39]	
Pool Heaters											[39]	
Refrigerators	[40]	Α	[36]	[53]	[56]	[56]	[57]	[57]	[58]	Α	[36]	Α
Room Air Conditioners	[59]	[3]	[60]	[42]					[58]		[43]	[3]
Standby Power	[40]	[10]	[22]	[44]	[7]	[61]	[62]	[31]	[46]	[52]	[63]	[64]
Televisions	[46]	[46]	[46]	[46]	[46]	[46]	[46]	[46]	[46]	[46]	[46]	[46]
Washing Machines				[65]				[25]	[58]			
Water Heaters	[66]		[48]	[47]					[58]		[48]	
Commercial Clothes Washers											[26]	
Distribution Transformers			[29]			[30]					[29]	
Electric Motors	[67]	[68]	[31]	[31]	[67]	[67]	[67]	[67]	[31]	[67]	[31]	[67]
Direct Cool						[56]						
Frost Free						[56]						
Window			[10]	[42]		[69]			[58]			
Split												
Central Air Conditioners (inc. HP)											[23]	
Motors			[63]	[31]							[63]	

Table 5 – Sources of Unit Energy Consumption Data

Target Unit Energy Consumption – Unit energy consumption of a high efficiency scenario is typically available only for standards already in progress ('Recent Achievements' scenario). Otherwise, target energy consumption is derived according to known performance achievements in other countries. This type of efficiency target is the subject of the *Best Practice Scenario*, which is described in Section 5.

Retirement (Survival) Function – The retirement function gives the probability that equipment will fail or be taken out of operation after a certain number of years. Retirement functions data are given for some equipment types by national analyses and follow common functional forms, such as Normal (Gaussian) or Weibull distributions. The Weibull distribution is commonly used to model equipment failure. Often, however, there are no data available to describe the particularities of the distribution. In those cases, BUENAS uses a normal distribution as a default. The mean value of this distribution, or average lifetime, is taken from the literature. In some cases, particularly in the U.S. studies, lifetimes were derived or tested by comparing historical sales and stock data. In general, however, lifetime estimates depend on anecdotal reports from industry experts and are subject to considerable uncertainty. *Carbon Factor* – The carbon factor is the constant of proportionality between final electricity consumption and carbon dioxide emissions. Carbon factor is a result of plant efficiency, transmission and distribution losses and the generation fuel mix. Carbon factors in the base year 2005 are taken from [70]. The projection of carbon factor is derived using the base year data, and scaling by the trend of IEA's World Energy Outlook (WEO) 2006 [71], which takes into account expected improvement in plant efficiency, reduction of transmission and distribution losses, and reduced dependence on fossil fuels for electricity generation. The analysis does not consider the difference between average and marginal carbon which, while more accurate, are difficult to forecast given the available data.

4. Activity, Stock Turnover and Intensity Methodology

One advantage to using the LEAP model as a platform for BUENAS is that many of the energy demand calculations are built in. These include standard stock turnover calculations. Given a sales input, base year vintage distribution and lifetime distribution, LEAP generates yearly stock and vintage of each equipment type. LEAP's internal calculations also keep track of the total energy demand of the stock, taking into account the evolution of unit energy consumption of each cohort or marginal *final energy demand*. If neither stock nor shipments are given as direct inputs into the model, BUENAS uses an alternative method for projecting residential appliance activity originally developed for the first version of the model. This methodological approach is the subject of Section 4.1. Section 4.2 deals with methodologies employed for commercial building and industrial motors modeling, which use more aggregate calculations of intensity and activity than the residential sector.

4.1. Residential Appliance Activity

Three different methods are used to estimate the total stock of a particular residential end use. For each region and end use, the highest accuracy method is chosen for which sufficient data are available. In order of decreasing accuracy, the methods are:

- 1. Stock based on historical and projected flows of products (unit sales).
- 2. Stock from historical and projected ownership rates sales derived from stock increases and replacement rates.
- 3. Stock from econometric modeling driven by macroeconomic trends sales derived from stock increases and replacement rates.

The original global version of BUENAS relied on a generic model of household ownership for all residential end uses and all regions. In the present version of the model, it is used for India and Latin American countries, as well as end uses in the United States for which sales data were not available. The details of the model development are not given here, but can be found in [3] and [4]¹². The diffusion relation is assumed to follow a logistic functional form and depend on GDP per household (income), urbanization rate and electrification rates according to the following general equation:

¹² Parameters in the journal article differ from those used in the current version of the model, which uses Purchase Power Parity to evaluate household income, while (McNeil and Letschert 2010) used market exchange rates.

$$Diff_{c} = \frac{\alpha}{1 + \gamma \exp(\beta_{inc}I_{c} + \beta_{elec}E_{c} + \beta_{urb}U_{c})}$$

In this equation, c is the country index. Parameters for each end use are given in Table 6. The full details of the development of the model and the data used to derive the parameters are provided in [4].

	Points of Lig	nt	ln γ	β_{Inc}	β_{Elec}	β_{Urb}
α	40	Coefficient	2.204	-3E-05		
Observations	42	Standard Error	0.18	3.0E-06		
R^2	0.71	t-Stat	12.45	-10.00		
	Refrigerator	S	ln γ	β_{Inc}	β_{Elec}	β_{Urb}
α	1.4	Coefficient	4.84	-1.3E-05	-3.59	-2.24
Observations	64	Standard Error	0.197	4.82E-06	0.27	0.59
R^2	0.92	t-Stat	24.508	-2.77	-13.42	-3.78
	Televisions		ln γ	β_{Inc}	β_{Elec}	β_{Urb}
α	3	Coefficient	3.701	-2.5E-05	-2.39	
Observations	46	Standard Error	0.134	4.96E-06	0.31	
R^2	0.85	t-Stat	27.584	-5.07	-7.66	
F	Room Air Conditi	oners	ln γ	β_{Inc}	β_{Elec}	β_{Urb}
α	ClimateMax	Coefficient	4.843	-6.9E-05		
Observations	24	Standard Error	0.503	9.82E-06		
R^2	0.69	t-Stat	9.635	-7.04		
	Fans		ln γ	β_{Inc}	β_{Elec}	β_{CDD}
α	3	Coefficient	0.798	9.79E-07	-1.13	3.41E-04
Observations	11	Standard Error	0.968	4.82E-06	0.98	1.34E-04
R^2	0.79	t-Stat	0.824	0.20	-1.15	2.55
S	tandby Power D	evices	ln γ	β_{Inc}	β_{Elec}	β_{Urb}
α	12	Coefficient	1.266	0.00		
Observations	20	Standard Error	0.508	0.00		
R^2	0.40	t-Stat	2.492	-3.43		

 Table 6 – Residential model Diffusion Parameters

In the case of fans, cooling degree days are used as a driving variable of ownership. Air conditioner ownership is also highly climate dependent. To model this, the diffusion equation for air conditioners is multiplied by a *climate maximum* parameter ranging from 0 to 1. Climate maximum is given by the following equation, as determined in (McNeil et al, 2009)

 $ClimateMaximum = 1.0 - 0.949 \times exp(-0.00187 \times CDD)$

This equation utilizes the climate parameter *cooling degree days* (*CDD*), which integrate total hours in a year during which outdoor temperatures exceed a reference defined as a cooling threshold. Cooling degree days are the main climate parameter determining cooling load, though other factors, such as humidity, are also important. Country specific parameters, including activity, and efficiency scenarios are given in the following sections.

4.2. Commercial and Industrial Sector Modeling

Floor Space Projection

The 'commercial' sector refers to all buildings that are not used as residences, or part of industrial facilities (also called 'tertiary' or 'service' sector). For the purposes of modeling, the commercial sector is distinguished from the residential sector in several important ways. First, buildings and end use equipment can vary greatly in size, from a room air conditioner used in a corner market to large chillers used in the largest office buildings. Second, data on these buildings and on the equipment installed in them is generally more sparse than for residences. Finally, residential end uses tend to be the first target of efficiency programs with commercial end uses targeted later. Such programs are an important source of insight into the consumption and further savings potential of upcoming programs.

Much of the emphasis for the commercial model involves the projection of commercial floor space. While current floor space estimates are available for some countries, in general projections are not. The strategy for determining floor space is to separately model the percentage of employment in the tertiary sector of the economy and the floor space per employee engaged in this sector. Service sector share (*SSS*) is multiplied by the total number of employees which is determined by:

- *Economically Active Population* $P_{EA}(y)$ from the International Labor Organization projected to 2020 and extrapolated thereafter [72].
- Unemployment Rate $R_U(y)$ from the International Labor Organization [72]till 2005, and projected to 2005 regional average by 2020.

SSS is modeled as a function of GDP per capita in terms of purchasing power parity (PPP). *SSS* data are available from the World Bank for a wide range of countries and for different years. The relationship between *SSS* and GDP per capita is modeled in the form of a log-linear equation of the form:

$$SSS(y) = a \times \ln(I(y)) + b$$

The parameters a and b are determined to be 0.122 and -0.596, respectively. More detail about the data used to determine these parameters can be found in [3].

Using these components, the number of service sector employees N_{SSE} is given by

$$N_{SSE}(y) = P_{EA}(y) \times (1 - R_U(y)) \times SSS(y)$$

Floor space per employee, denoted f(y) is, like *SSS*, assumed to be a function of per capita income only. The relationship assumes a logistic functional form:

$$f(y) = \frac{a}{1 + \gamma \times exp(\beta'' \times i(y))}$$

In this equation, the maximum value α is set to 70 m² per employee, which was larger than any of the observed data. The variable *I* denotes GDP per capita and β'' and γ were determined to be -9.9 ×10⁻⁵ and 6.04 respectively. More detail about the data used to determine these parameters can be found in [3].

End Use Intensity

Generally, it is difficult or near-impossible to model commercial end use intensity according to stock flows of specific equipment types due to data limitations. Therefore, end use intensity estimation takes an aggregate approach. End-use intensity is composed of *Penetration*, *Efficiency* and *Usage*. Penetration takes into account the effect of economic development on increased density of equipment expressed in Watts per m², and is assumed to be a function of GDP per capita only. Relative efficiency is estimated from specific technologies and usage is given by hours per year. Savings between the high-efficiency and the business as usual case arise from percentage efficiency improvements.

Lighting

Lighting efficiency is estimated as the fraction in the stock of lighting types: T12, T8 and T5 fluorescent tubes, incandescent lamps, CFLs, Halogen lamps and other lamps. In addition, relative efficiency of fluorescent lamp ballasts contributes to overall lighting efficiency. Assumptions for lighting energy intensity, and the subsequent calculation of penetration are provided in [3]. The result is a model of penetration according to a logistic function,

$$p(W/m2) = \frac{\alpha}{1 + \gamma \times e^{\beta \times I(y)}}$$

The variable I(y) denotes GDP per capita and α , β and γ are found to be 16.0, -7.78 ×10⁻⁵ and 3.55 respectively.

Space Cooling

Space cooling energy intensity is of course a strong function of climate, but also economic development. Its dependence on cooling degree days (CCD) is assumed to be linear. The dependence on GDP per capita, which we call "availability", takes a logistic form:

$$Int(kW/m2) = \frac{\alpha}{1 + \gamma \times e^{\beta \times I(y)}} \times (a + b \times CCD)$$

In order to separate the effect, the climate dependence is determined from U.S. data, where availability is assumed to be maximized. Once modeled in this way, the climate dependence can be divided out of final energy intensity data to yield availability as a function of GDP per capita. The parameters for space cooling intensity determined in this way are:

$$\alpha = 1.8, \beta = 0.00011, \gamma = 8.83; a = 9.7193, b = 0.0123$$

Space cooling efficiency is determined according to estimates of market shares of room air conditioners, central air conditioners and chillers, prevailing base line technologies and feasible efficiency targets (see[3])

Refrigeration

Due to a scarcity of data for commercial refrigeration, space cooling *penetration* is assumed to have the same shape as lighting, that is, the availability of space cooling increases as a function of per capita GDP in the same proportion as for lighting, but with a different coefficient of proportionality *A*.

$$Int(kWh/m2) = \frac{A}{1 + \varkappa^{\beta I(y)}}$$

The penetration curve is then calibrated to data from the United States, which has a refrigeration intensity of 9.94 kW/m². The resulting value of *A* is 10.61 kW/m². In the high efficiency scenario, an improvement of 34% is assumed to be possible [73]in all countries.

Industrial Motors Activity

Electricity demand and savings potential for electric motors is treated in the same way for all regions except for the European Union, for which a motor stock projection is provided in the Ecodesign preparatory study [31]. The model for industrial motor activity used in BUENAS is somewhat simplistic. For all countries outside of the EU, total electricity consumption of motors as a fraction of industrial electricity is used as the activity variable, according to the following formula:

$$Elec(y) = GDPVA_{IND}(y) \times \varepsilon \times p$$

In this equation, $GDPVA_{IND}$ is the value added to GDP from the industrial sector. The variable ε is the electricity intensity of the industrial sector, that is, the amount of electricity consumed for each dollar of industrial value added. This variable is taken from historical energy consumption data (from IEA) and divided by $GDPVA_{IND}$ from the World Bank in the base year. Multiplying ε and $GDPVA_{IND}$ for the base year simply gives back reported industrial electricity consumption in that year and, since ε is assumed constant, industrial electricity consumption in the projection simply grows at the same rate as $GDPVA_{IND}$. The fraction p is the percentage of industrial electricity passing through motors¹³. Multiplying the three variables together then gives motor electricity consumption in each year through 2030.

¹³ Sources by country or region given in BUENAS Inputs Spreadsheet.

5. High Efficiency Scenario Details

BUENAS currently contains two policy-driven high-efficiency scenarios that are compared to the Business As Usual (BAU) case in order to evaluate impacts of efficiency policy steps. The first of these is called the *Recent Achievements Scenario*, while the second is the *Best Practice Scenario*.

The *Recent Achievement Scenario* is concrete and highly specific. It is meant to quantify the impacts of efficiency programs already implemented or in progress. Three types of policy or 'groups' are considered. These are:

Group 1Regulations implemented between January 1, 2010 and April 1, 2011 (effective date)Group 2Regulations issued between January 1, 2010 and April 1, 2011 (announcement date)Group 3Regulations in progress between January 1, 2010 and April 1, 2011 (with scheduled announcement date)

Of these, Group 3 is the most speculative, since regulations 'in progress" could be at a wide range of development, from a proposal to act, to a nearly complete process. For definiteness, we include only those regulations that have a specific implementation date associated with them. Even with this definition, many regulations in this category lack sufficient definition and data to support our analysis.

To date, only mandatory minimum efficiency performance standards (MEPS) are included in the *Recent Achievements Scenario*, but future versions may include labeling programs and financial incentive programs. In addition, only selected standards in the United States, European Union, Canada, Mexico and Korea are captured. This list is being continually expanded to include all recent standards implemented by participants of SEAD and possibly Clean Energy Ministerial members.

The second major scenario included in BUENAS considers the <u>potential impacts</u> of regulations in the near to medium term. This scenario corresponds roughly to the scenario used in the first "Global Potential" study[3], which included aggressive but achievable levels in all countries. There are many possible ways of defining such targets including cost-effectiveness, removal of a certain fraction of models from the market or best available technology. Due to data limitations, the most practical of these has been to rely on an evaluation of best practices. The best practice scenario assumes that all countries adopt stringent standards in modeled end uses by 2015, where 'stringent' is interpreted in the following way:

- 1. Where efficiency levels are readily comparable across countries: the most stringent standard issued by April 1, 2011 anywhere in the world.
- 2. Where they are not: the most stringent comparable (e.g., regional) standard issued by April 1, 2011.
- 3. In the case where an obvious best comparable standard was not available, an efficiency level was set that was deemed to be aggressive or achievable, such as the most efficient products in the current rating system.

In addition, the best practice scenario assumes that standards are further improved in the year 2020, by an amount estimated on a product-by-product basis.

 Table 7 and Table 8 summarize the references and assumptions used in modeling the *Recent*

 Achievements Scenario and Best Practice Scenario.

 The following variables are shown:

Group - Category of regulation: 1 = implemented, 2 = announced, 3 = in progress End Use - Appliance type covered by the regulation ISO - International Standards Organization 3 - letter country code Standard Year - Year that regulation takes effect $UEC_{BC} - Unit Energy Consumption in the Business as Usual Case^{14}$ Reference - Source of Unit Energy Consumption data Ref ID - number of reference in References section below $UEC_{RA}, UEC_{BP} - Unit Energy Consumption in the Recent Achievements or Best Practice Scenario$ % Imp - Percentage improvement between Business as Usual Case and Recent Achievements Scenario
Assumptions / Definition - Definitions provided by regulatory documents or assumptions made regarding best practice in developing the scenario

¹⁴ While efficiency is generally assumed to be constant in the Business as Usual case, Unit Energy Consumption can change over time according to usage trends.

		Product										%	Assumptions /
Group	End Use	Class	Units	ISO	Std. Yr	UECBC	Reference	Ref ID	UEC _{RA}	Reference	Ref ID	imp.	Definition
-						20	U.S. Rulemaking			U.S. Rulemaking		-	
2	Refrigerators	All	kWh/vr	USA	2014	577	Documents	[36]	481	Documents	[36]	17%	TSL 2
			-				U.S. Rulemaking			U.S. Rulemaking			
2	Refrigerators	Top Mount	kWh/vr	USA	2014	520	Documents	[36]	404	Documents	[36]	22%	TSL 2
	Ŭ		ý				U.S. Rulemaking			U.S. Rulemaking		1	
2	Refrigerators	Side by Side	kWh/yr	USA	2014	716	Documents	[36]	612	Documents	[36]	15%	TSL 2
	0	Bottom					U.S. Rulemaking			U.S. Rulemaking			
2	Refrigerators	Mount	kWh/yr	USA	2014	556	Documents	[36]	533	Documents	[36]	4%	TSL 2
							U.S. Rulemaking			U.S. Rulemaking			
2	Refrigerators	Others	kWh/yr	USA	2014	603	Documents	[36]	568	Documents	[36]	6%	TSL 2
							Ecodesign			Ecodesign			
1	Refrigerators		kWh/yr	EU	2010	251	Documents	[41]	262	Documents	[53]	-4%	
													Same %
													improvement as
													U.S.
													(Harmonization
3	Refrigerators		kWh/yr	MEX	2014	369		[58]	309	CONUEE	[58]	16%	Scenario)
	Room Air						U.S. Rulemaking			U.S. Rulemaking			
2	Conditioners		kWh/yr	USA	2014	529	Documents	[43]	494	Documents	[43]	7%	
	Room Air						U.S. Rulemaking			U.S. Rulemaking			
2	Conditioners	PC1	kWh/yr	USA	2014	387	Documents	[43]	342	Documents	[43]	12%	CSL3
	Room Air						U.S. Rulemaking			U.S. Rulemaking			
2	Conditioners	PC3	kWh/yr	USA	2014	598	Documents	[43]	565	Documents	[43]	6%	CSL3
_	Room Air						U.S. Rulemaking			U.S. Rulemaking			
2	Conditioners	PC5a	kWh/yr	USA	2014	459	Documents	[43]	451	Documents	[43]	2%	CSL2
_	Room Air						U.S. Rulemaking			U.S. Rulemaking			
2	Conditioners	PC5b	kWh/yr	USA	2014	535	Documents	[43]	531	Documents	[43]	1%	CSLI
	Room Air	DCO	1.11.1	LIG A	2014	17.1	U.S. Rulemaking	C (0)	150	U.S. Rulemaking	F 401	201	CCL A
2	Conditioners	PC8a	kWh/yr	USA	2014	474	Documents	[43]	458	Documents	[43]	3%	CSL2
2	Room Air	DC01	1 33 71 /	TIC A	2014	706	U.S. Rulemaking	F 4 2 1	(00	U.S. Rulemaking	[42]	20/	001.0
2	Conditioners	PC8b	KWh/yr	USA	2014	/06	Documents	[43]	688	Documents	[43]	2%	CSL2
2	Room Air		1-3371- /	EU	2014	201	Ecodesign	[40]	100	Ecodesign	[40]	500/	MEPS 2012
3	Conditioners		KWN/yr	EU	2014	381	Documents	[42]	190	Documents	[42]	50%	Scenario
													Same %
													Inprovement as
	Poom Air												U.S. (Hermonization
3	Conditioners		FER	MEX	2014	3		[58]	3.0	CONUEE	[58]	7%	(marino)
5	Room Air		LER	WIL2X	2014	5		[50]	5.0	CONCLE	[50]	770	Sechario)
2	Conditioners		kWh/vr	CAN	2011	2160		[69]	561		[60]	74%	
2	Room Air			Crin,	2011	2100		[07]	501		[00]	, 170	
1	Conditioners		kWh/vr	AUS	2010	1771		[7]	1557		[59]	12%	
-	Central Air	1			2010	1,,1			1007		[27]	12/0	
	Conditioners						U.S. Rulemaking			U.S. Rulemaking			
2	(inc. HP)		kWh/yr	USA	2016	3075	Documents	[23]	2915	Documents	[23]	5%	
2	Central Air	SAC-CO	kWh/yr	USA	2016	2384	U.S. Rulemaking	[23]	1965	U.S. Rulemaking	[23]	18%	TSL 4

Table 7 – References and Definitions of Recent Achievements Scenario

		Product										%	Assumptions /
Group	End Use	Class	Units	ISO	Std. Yr	UEC _{BC}	Reference	Ref ID	UEC _{RA}	Reference	Ref ID	imp.	Definition
	Conditioners						Documents			Documents			
	(inc. HP)												
	Central Air												
	Conditioners						U.S. Rulemaking			U.S. Rulemaking			
2	(inc. HP)	SAC-BC	kWh/yr	USA	2016	2242	Documents	[23]	1857	Documents	[23]	17%	TSL 4
	Central Air												
	Conditioners						U.S. Rulemaking			U.S. Rulemaking			
2	(inc. HP)	PAC	kWh/yr	USA	2016	2645	Documents	[23]	2143	Documents	[23]	19%	TSL 4
	Central Air												
	Conditioners						U.S. Rulemaking			U.S. Rulemaking			
2	(inc. HP)	SHP	kWh/yr	USA	2016	5047	Documents	[23]	4943	Documents	[23]	2%	TSL 4
	Central Air												
	Conditioners						U.S. Rulemaking			U.S. Rulemaking			
2	(inc. HP)	PHP	kWh/yr	USA	2016	5335	Documents	[23]	5199	Documents	[23]	3%	TSL 4
		Incandescent								U.S. Rulemaking			67 W 1.9 hours per
2	Lighting	Lamps	kWy/yr	USA	2014	46		[74]	46	Documents		*	day
		Incandescent	1 33 71 /	E U	2012		Ecodesign			Ecodesign	[-1-	
1	Lighting	Lamps	kWh/yr	EU	2012	22	Documents	[55]	22	Documents	[55]	*	
		Fluorescent											
2	T 1 1	Lamp	1 337 /		2014	21	U.S. Rulemaking	[24]	21	U.S. Rulemaking		20/	
2	Lighting	Ballasts	KW y/yr	USA	2014	31	Documents	[34]	31	Documents		3%	
2	Washing		1-3371- /	MEN	2014	75	CONTIEE	[50]	(0)	CONTREE	[50]	200/	
2	Washing		K W II/ yr	MEA	2014	15	Easdasise	[38]	00	Easdasise	[38]	20%	
1	Machines		kW/b/vr	EU	2012	233	Documents	[25]	221	Documents	[65]	50%	
1	Washing		K VV II/ yI	EU	2012	233	Documents	[23]	221	Documents	[05]	J 70	
1	Machines		kWh/wr	KOR	2011	233		[25]	151			35%	Same as FU
1	Widennies		K WII/ yi	KOK	2011	235		[23]	151			5570	0.1 % cost
													effective
		Electric					U.S. Rulemaking			U.S. Rulemaking			efficiency
2	Drvers	Drvers	kWh/vr	USA	2015	695	Documents	[24]	677	Documents	[24]	3%	improvement
							U.S. Rulemaking	L= -1		U.S. Rulemaking	[]		
2	Drvers	Gas Drvers	GJ/vr	USA	2015	3	Documents	[24]	3	Documents	[24]	1%	
		, , , , , , , , , , , , , , , , , , ,									. ,		0.19% cost
													effective
	Cooking						U.S. Rulemaking			U.S. Rulemaking			efficiency
1	Products	Electric	kWh/yr	USA	2015	153	Documents	[49]	152	Documents	[49]	1%	improvement
	Cooking						U.S. Rulemaking			U.S. Rulemaking			No Cost Effective
1	Products	Gas	GJ/yr	USA	2012	0.9	Documents	[49]	1	Documents	[49]	10%	Improvement
							U.S. Rulemaking			U.S. Rulemaking			
2	Furnaces	NWGF	GJ/yr	USA	2015	35	Documents	[23]	32	Documents	[23]	7%	TSL 4
							U.S. Rulemaking			U.S. Rulemaking			
2	Furnaces	MHF	GJ/yr	USA	2015	43	Documents	[23]	37	Documents	[23]	15%	TSL 4
							U.S. Rulemaking			U.S. Rulemaking			
2	Furnaces	OF	GJ/yr	USA	2015	70	Documents	[23]	70	Documents	[23]	0%	TSL 4
							U.S. Rulemaking			U.S. Rulemaking			
2	Furnaces	EF	kWh	USA	2015	586	Documents	[23]	586	Documents	[23]	0%	TSL 4

		Product										%	Assumptions /
Group	End Use	Class	Units	ISO	Std. Yr	UEC _{BC}	Reference	Ref ID	UEC _{RA}	Reference	Ref ID	imp.	Definition
	Water						U.S. Rulemaking			U.S. Rulemaking			
2	Heaters	Electric	kWh/yr	USA	2015	2491	Documents	[48]	2305	Documents	[48]	7%	TSL 5
	Water						U.S. Rulemaking			U.S. Rulemaking			
2	Heaters	Gas Storage	GJ/yr	USA	2015	17	Documents	[48]	16	Documents	[48]	3%	TSL 5
													Newly announced
													canadian standards
	Water												come into effect in
2	Heaters	Gas Storage	GJ/yr	CAN	2013	17		[48]	15		[48]	12%	2013
	Water								10				
3	Heaters	Gas Storage	GJ/yr	AUS	2010	15		[3]	13		[3]	16%	
	Water	Gas					U.S. Rulemaking	5.403		U.S. Rulemaking	F 103		
2	Heaters	Instantaneous	GJ/yr	USA	2010	11	Documents	[48]	11	Documents	[48]	2%	TSL 5
2	Water	Gas	CI/	AUG	2010	1.1		F 401	11	U.S. Rulemaking	F 401	20/	
3	Heaters	Instantaneous	GJ/yr	AUS	2010	11		[48]	11	Documents	[48]	2%	
2	Water	C	CL/m	MEN	2014	21	CONTRE	[50]	10	CONTRE	[50]	1.00/	
2	Heaters	Gas	GJ/yr	MEA	2014	21	CONUEE	[38]	19	CONUEE	[38]	10%	U. f. IF.
													from Ecodosign
													Efficiency taken as
													MEPS level in the
	Water						Ecodesign			Ecodesign			2010 US
3	Heaters	Gas	kWh/vr	EU	2013	3136	Documents	[47]	3105	Documents	[47]	1%	rulemaking
5	Water	Cub	n () na yr	20	2010	0100	Ecodesign	[]	0100	Ecodesign	[.,]	170	Turemaning
3	Heaters	Elec	kWh/vr	EU	2013	2056	Documents	[47]	1799	Documents	[47]	12%	
	Water						Ecodesign			Ecodesign			
3	Heaters	Oil	kWh/yr	EU	2013	3491	Documents	[47]	3209	Documents	[47]	8%	
			,				Ecodesign			Ecodesign			
3	Boilers	Gas	kWh/yr	EU	2012	14503	Documents	[20]	12459	Documents	[20]	14%	
			-				Ecodesign			Ecodesign			
3	Boilers	Elec	kWh/yr	EU	2012	11602	Documents	[20]	10217	Documents	[20]	12%	
							Ecodesign			Ecodesign			
3	Boilers	Oil	kWh/yr	EU	2012	14503	Documents	[20]	12163	Documents	[20]	16%	
2	Boilers		GJ/yr	CAN	2010	81		[10]	79		[10]	2%	
	Standby						Ecodesign			Ecodesign			
1	Power		kWh/yr	EU	2010	17	Documents	[44]	7	Documents	[44]	59%	
							U.S. Rulemaking			U.S. Rulemaking			
1	Pool Heater		GJ/yr	USA	2013	35	Documents	[39]	33	Documents	[39]	4%	TSL 2
	Direct												
	Heating						U.S. Rulemaking			U.S. Rulemaking			
1	Equipment		GJ/yr	USA	2013	20	Documents	[28]	20	Documents	[28]	3%	TSL 2
	-						U.S. Rulemaking	100		U.S. Rulemaking			max a
1	Freezers	All	kWh/yr	USA	2014	529	Documents	[36]	347	Documents	[36]	34%	TSL 2
	-		1 33 71 /	110.			U.S. Rulemaking	100		U.S. Rulemaking	10.5		mar a
2	Freezers	Up Right	kWh/yr	USA	2014	671	Documents	[36]	420	Documents	[36]	37%	TSL 2
	F	CT (1 33 71 /	110.1	2011	20.4	U.S. Rulemaking	1263	250	U.S. Rulemaking	[26]	2004	TOL 0
2	Freezers	Cnest	KWh/yr	USA	2014	394	Documents	[36]	278	Documents	[36]	30%	18L 2
3	Freezers		kwh/yr	EU	2010	285	Ecodesign	[51]	234	Ecodesign	[53]	18%	

C	E. J.L.	Product	T	160	Ct J V.	UEC	Deferrer	D-61D	UEC	D - f	D-61D	%	Assumptions /
Group	End Use	Class	Units	150	Sta. Yr	UECBC	Reference	Ref ID	UECRA	Reference	Ref ID	imp.	Definition
							Documents			Documents			
													Assumes DW 1s
													not part of the
							E d i			Tradition			special category
2	D'abarraham		1-3371- /	EU	2012	250	Ecodesign	[25]	204	Ecodesign	[50]	1.20/	10 place settings
2	Disnwasners	075751-11	KWN/yr	EU	2012	350	Documents	[25]	304	Documents	[50]	15%	AND includes SB
2	Mataur	(1.11.00)	1-3371- /	EU	2017	1405	Ecodesign	[25]	1461	Ecodesign	[21]	20/	IE2 h 2017
2	Motors	(1.1 KW)	KWN/yr	EU	2017	1485	Documents	[35]	1401	Documents	[31]	2%	IE3 by 2017
2	N .	7.5-75 KWH	1 33 71 /	ET.	2017	10000	Ecodesign	[21]	10.470	Ecodesign	[21]	20/	TT21 2017
2	Motors	(11 KW)	KWh/yr	EU	2017	19800	Documents	[31]	19479	Documents	[31]	2%	IE3 by 2017
	34.5	> 75 kW	1 1 1 1		2017	20 (000	Ecodesign	[21]	200571	Ecodesign	1011	201	W21 2017
2	Motors	(110 kW)	kWh/yr	EU	2017	396000	Documents	[31]	389571	Documents	[31]	2%	IE3 by 2017
		0.75-7.5 kW					Ecodesign	5243	1000	U.S. Rulemaking			NEMA Premium
l	Motors	(1.1 kW)	kWh/yr	USA	2010	1361	Documents	[31]	1339	Documents	[63]	2%	by 2010 (EISA)
		7.5-75 kWH					Ecodesign	5243		U.S. Rulemaking			NEMA Premium
1	Motors	(11 kW)	kWh/yr	USA	2010	19235	Documents	[31]	18922	Documents	[63]	2%	by 2010 (EISA)
		>75 kW					Ecodesign			U.S. Rulemaking			NEMA Premium
1	Motors	(110 kW)	kWh/yr	USA	2010	392550	Documents	[31]	386178	Documents	[63]	2%	by 2010 (EISA)
		0.75-7.5 kW					Ecodesign			U.S. Rulemaking			Harmonization
1	Motors	(1.1 kW)	kWh/yr	CAN	2011	1361	Documents	[31]	1339	Documents	[63]	2%	with US by 2011
		7.5-75 kWH					Ecodesign			U.S. Rulemaking			Harmonization
1	Motors	(11 kW)	kWh/yr	CAN	2011	19235	Documents	[31]	18922	Documents	[63]	2%	with US by 2011
		>75 kW					Ecodesign			U.S. Rulemaking			Harmonization
1	Motors	(110 kW)	kWh/yr	CAN	2011	392550	Documents	[31]	386178	Documents	[63]	2%	with US by 2011
	Distribution									U.S. Rulemaking			
1	Transformers	All Types	kWh/yr	USA	2010	10794		[29]	5702	Documents	[29]	47%	
													Canada announced
													harmonization
	Distribution									U.S. Rulemaking			with U.S. MEPS
1	Transformers		kWh/yr	CAN	2010	10794		[29]	5702	Documents	[29]	47%	effective 2010.
	Commercial												
	Clothes									U.S. Rulemaking			
2	Washers		kWh/yr	USA	2013	3102		[26]	2582	Documents	[26]	17%	

	Product			Std.			Ref				%	Assumptions /
End Use	Class	Units	ISO	Yr	UECBC	Reference	ID	UECBP	Reference	Ref ID	imp.	Definition
Refrigerators		kWh/yr	USA	2014	577.1	DOE Final Rule	[36]	481		[36]	20%	
Refrigerators		kWh/yr	MEX	2015	369.0	IIE 2005	[75]	295.2		[75]	25%	
Refrigerators		kWh/yr	CAN	2015	577.1	assumed equal to US		481.2	DOE Final Rule		20%	Ratio from 2014 Standard
Refrigerators		kWh/yr	EU	2014	279	Ecodesign	[41]	232		[41]	40%	
						Same size as Europe,						
Refrigerators		kWh/yr	RUS	2015	597	Level C		232			40%	
						Same size as Europe,						
Refrigerators		kWh/yr	ZAF	2015	597	Level C		232	A+		40%	EU A++ Level
Refrigerators		kWh/yr	IDN	2015	328	assumed equal to India		323	5 Star Phase 1		49%	India 5 Star Phase 2
						Same size as Europe,						
Refrigerators		kWh/yr	BRA	2015	597	Level C		232	A+		40%	EU A++ Level
											10.01	Indian Labeling Program
Refrigerators		kWh/yr	IND	2015	327.7	McNeil & Iyer 2009	[56]	323	5 Star Phase I		49%	5 Star Phase 1
D.C.		1.11.1		2015	410		F 4 0 1			F 401	2504	Australian Labeling
Refrigerators		KWh/yr	AUS	2015	412	Australian TSD (3E)	[40]	323	6 Star Ref	[40]	35%	Program, 10 Star
Refrigerators		kWh/yr	JAP	2015	519.04	Top Runner Target		429.0	Next Top Runner, 21%		21%	
Defrigeratore		hW/b/am	KOD	2015	510.04	Top Bupper Terget		420.0	improvement)		210/	
Refigerators		EED	LIGA	2013	2.04	DOE Einel Pule	[42]	429.0	improvement)		2170	
RAC		EER	CAN	2014	2.07	4E Panahmarking	[43]	2.59	4		1204	
RAC		EER	MEY	2015	2.10	4E Denchmarking		3.30	Top Bunner		220/	
KAC		EEK	MEA	2015	2.70	4E BenchinarKing	-	3.42			23%	
						Scenario-personal			Ecodesign, MEPS 2012			
RAC		SEER	EU	2012	3 17	communication	[42]	3 95	communication Philippe		24%	
RAC		SEER	RUS	2012	3.17	assumed equal to FU	[12]	3.95	Riviere		21%	
RAC		FER	IND	2015	2.63	CLASP Impact Study		3.23	laviere		23%	
RAC		FFR	IDN	2015	2.03	assumed equal to India		3.23	1		2376	
RAC		FFR	AUS	2015	2.55	4F Benchmarking		3 33	-		15%	
iuic		LER	nes	2015	2.90	assumed equal to		5.55	-		1370	
RAC		EER	ZAF	2015	2.78	Mexico		3 42			23%	
						assumed equal to						
RAC		EER	BRA	2015	2.78	Mexico		3.42			23%	
RAC		EER	JAP	2015	2.88	assumed equal to Korea		3.23	1		12%	
RAC		EER	KOR	2015	2.88	4E Benchmarking		3.2	Top Runner		12%	Ratio from 2015 Standard
LCD		kWh/vr	USA	2012	102.5	LBNL Technical Study	[46]	96.2		[46]	5.00%	
LCD		kWh/vr	MEX	2012	71.4	LBNL Technical Study	[46]	60.6		[46]	5.00%	
LCD		kWh/vr	CAN	2012	82.0	LBNL Technical Study	[46]	77.0		[46]	5.00%	
LCD		kWh/vr	EU	2012	64.6	LBNL Technical Study	[46]	60.9	1	[46]	5.00%	
LCD		kWh/vr	RUS	2012	69.1	LBNL Technical Study	[46]	63.2	1	[46]	5.00%	
LCD		kWh/vr	ZAF	2012	72.0	LBNL Technical Study	[46]	64.8	Super Efficiency Scenario	[46]	5.00%	Standard 5% more
LCD		kWh/vr	IDN	2012	72.0	LBNL Technical Study	[46]	64.8	Cost Effective Target	[46]	5.00%	efficient than baseline in
LCD		kWh/yr	BRA	2012	70.2	LBNL Technical Study	[46]	67.2	DBF+Dimming	[46]	5.00%	every year

Table 8 – References and Definitions of Best Practice Scenario

	Product			Std.			Ref				%	Assumptions /
End Use	Class	Units	ISO	Yr	UEC _{BC}	Reference	ID	UEC _{BP}	Reference	Ref ID	imp.	Definition
LCD		kWh/yr	IND	2012	70.5	LBNL Technical Study	[46]	60.6		[46]	5.00%	
LCD		kWh/yr	AUS	2012	70.5	LBNL Technical Study	[46]	63.6		[46]	5.00%	
LCD		kWh/yr	JAP	2012	70.8	LBNL Technical Study	[46]	67.5		[46]	5.00%	
LCD		kWh/yr	KOR	2012	70.5	LBNL Technical Study	[46]	63.6		[46]	5.00%	
Stand By		kWh/yr	USA	2015	17.2	Ecodesign	[44]	3.6		[44]	402%	
Stand By		kWh/yr	MEX	2015	17.2	Ecodesign	[44]	3.6		[44]	402%	
Stand By		kWh/yr	CAN	2015	17.2	Ecodesign	[44]	3.6		[44]	402%	
Stand By		kWh/yr	EU	2013	17.2	Ecodesign	[44]	3.6		[44]	402%	
Stand By		kWh/yr	RUS	2015	17.2	Ecodesign	[44]	3.6		[44]	402%	
Stand By		kWh/yr	ZAF	2015	17.2	Ecodesign	[44]	3.6		[44]	402%	
Stand By		kWh/yr	IDN	2015	17.2	Ecodesign	[44]	3.6		[44]	402%	
Stand By		kWh/yr	BRA	2015	17.2	Ecodesign	[44]	3.6		[44]	402%	
Stand By		kWh/yr	IND	2015	17.2	Ecodesign	[44]	3.6		[44]	402%	
Stand By		kWh/yr	AUS	2015	17.2	Ecodesign	[44]	3.6		[44]	402%	
Stand By		kWh/yr	JAP	2015	17.2	Ecodesign	[44]	3.6		[44]	402%	
Stand By		kWh/yr	KOR	2015	17.2	Ecodesign	[44]	3.6	Ecodesign	[44]	402%	0.1 W standard
Water Heater	Electric	kWh/yr	USA	2015	2491	DOE, TSD 2010		2305	DOE, FR 2010		90%	
									DOE, FR 2010-assumes			Heat Pump, DOE FR
Water Heater	Electric	kWh/yr	CAN	2015	2491	assumed equal to US		2305	same % imp		90%	2010
						Useful energy from						
						Ecodesign study,						
						efficiency from USDOE			Efficiency target same as		EER=2	Heat Pump, DOE FR
Water Heater		kWh/yr	EU	2013	2161	rulemaking		1799	US FR,2010		.35	2010
Water Heater	Electric	kWh/yr	AUS	2015	3603	McNeil et. al 2008	[3]	3262	McNeil et. al 2008		10%	Ratio from 2015 Standard
XX7 / TT /	0.0		TIC A	2015	16.0	DOE ED 2010		160	DOE ED 2010		2.40/	Condensing, DOE FR
Water Heater	Gas Storage	GJ/yr	USA	2015	10.8	DUE, FR 2010		10.5	DOE, FR 2010		24%	2010 Detic from 2015 Stordard
water Heater	Gas Storage	GJ/yr	MEA	2014	20.90	CONUEE		18.81	CONUEE		11%	Ratio from 2015 Standard
Water Heater	Gas Storage	CI/ur	CAN	2015	16.9	accumed equal to US		16.2	DOE, FR 2010-assumes		2.404	Condensing, DOE FR
water meater	Cas Storage	OJ/yl	CAN	2015	10.0	Global model		10.5	same 70 mp		2470	2010
						Baseline+Savings from			Syneca Consulting 5 star			
Water Heater	Gas Storage	GI/vr	AUS	2015	15 37	Svneca report	[66]	13	std		19%	Ratio from 2015 Standard
	Gas	20, 92				~)	[00]				- , , ,	
Water Heater	Instantaneous	GJ/yr	USA	2015	11.3	DOE, FR 2010		11.1	DOE, FR 2010		16%	Condensing
	Gas	, i i i i i i i i i i i i i i i i i i i				,			Syneca Consulting, 6 star			
Water Heater	Instantaneous	GJ/yr	AUS	2015	11.3	US baseline		9.2	std		22%	Ratio from 2015 Standard
								Phase				
					Phase			out by				
Incandescent				3	out by			end of				
Lamps		% IL	USA	tier	2020	LBNL Assumption		2014	1		67%	
								Phase				
					Phase			out by				
Incandescent				3	out by			end of				100Lm/W LEDs (CFLs
Lamps		% IL	CAN	tier	2020	LBNL Assumption	1	2014	EISA		67%	60Lm/W)

End Use	Product Class	Units	ISO	Std. Yr	UECBC	Reference	Ref ID	UEC _{RP}	Reference	Ref ID	% imp.	Assumptions / Definition
					DI			Phase				
Incondescent				2	Phase			out by				
Lamps		% П.	Others	5 tier	2030	LBNL Assumption		2014			67%	
Fluorescent		70 HL	Oulers	tier	2030	EDI (E 7 Issumption		2011			0770	
Ballast		%	USA	2015	80%	Harmonization Report		87.80%		[76]	4%	
Fluorescent						^ ^						
Ballast		%	CAN	2015	78%	Global Model		87.80%		[76]	4%	
Fluorescent												
Ballast		%	MEX	2015	80%	assumed equal to US		87.80%		[76]	4%	
Fluorescent Ballast		%	EU	2017	80%	Harmonization Report	[54]	87.80%		[76]	4%	
Fluorescent						F***	[6.1]	0.10070	•	[]	.,.	
Ballast		%	RUS	2015	78%	McNeil et. al 2008	[3]	87.80%		[76]	4%	
Fluorescent												
Ballast		%	ZAF	2015	78%	McNeil et. al 2008	[3]	87.80%		[76]	4%	
Fluorescent					-					11 1		
Ballast		%	IDN	2015	70%	McNeil et. al 2008	[3]	87.80%		[76]	4%	
Fluorescent		0/	BD A	2015	78%	McNeil et al 2008	[3]	87 80%		[76]	404	
Fluorescent		70	DKA	2013	7 8 70	Wichell et. al 2008	[3]	07.00%		[70]	4 70	
Ballast		%	IND	2015	70%	McNeil et. al 2008	[3]	87.80%		[76]	4%	
Fluorescent										L		BAT from Harmonization
Ballast		%	AUS	2015	80%	assumed equal to EU		87.80%	Ecodesign Directive	[76]	4%	Report
Furnace		GJ/yr	USA	2015	34.7	Final Rule 2011	[40]	32.3	Final Rule 2011	[40]	28.5	Condensing
						Energy Use			assumed equal to US,			
Furnace		GJ/yr	CAN	2015	79	Datahandbook 2008	[10]	73	scaled		8%	
E E		1 33 71 /		2015	205.22	E' 1 D 1 2011	F 4 0 1	265.2	Scales with Fuel		00/	
Furnace Fan	-	K W n/yr	USA	2015	285.32	Final Rule 2011	[40]	265.5	consumption of NWGF		8%	
Eurnace Fan		kWh/vr	CAN	2015	643	scaled		598	scaled		8%	
Central AC		kWh/yr	USA	2015	3234.8	Final Rule 2011	[40]	2915	Final Rule 2011	[40]	11%	
						Energy Use	[]	-/		[]	/ -	
Central AC		kWh/yr	CAN	2015	1,698	Datahandbook 2008	[10]	1630			4%	
						Energy Use in Australia						
						in the residential sector			Same % Improvement as			
Central AC		KWh/yr	AUS	2015	432	1986-2020	[22]	414	US		4%	
Freezer		kWb/vr	USA	2014	520.3	Final Pule 2011	[77]	347	Final Pule 2011	[77]	5204	
1100201		K VV II/ yf	USA	2014	329.3		[//]	347		[//]	32%	•
Freezer		kWh/vr	EU	2014	233.4	Ecodesign	[41]	223	Ecodesign Directive	[41]	5%	Ratio from 2015 Standard

6. Discussion of Uncertainty

A well-established methodology exists for establishing the uncertainties in a mathematical model, given reliable estimates of uncertainties in the inputs. Unfortunately, errors are generally not well-defined for most model inputs in BUENAS. Therefore, a robust quantification of uncertainties is not possible. Instead, this discussion presents the general level of uncertainty of key variables and their impact on the final results. There are two general categories of uncertainties associated with BUENAS inputs:

- Errors in determination of "data-driven" parameters
- Uncertainties forecast parameters due to difficulty in predicting the future

In principle, the first of these could be reduced or eliminated with sufficient data, while the second are "irreducible" to the extent that the future is difficult to predict. Parameters that are "data-driven" include energy efficiency and product class market shares, usage patterns, lifetimes and sales. Critical forecast variables include sales growth rates, population and household size, economic growth and evolution of baseline efficiency. Finally, a third category of parameters includes efficiency targets chosen in each policy case. These "scenario" variables are essentially the choice of the modeler, and do not imply an uncertainty *per se*.

The following sections describe the general level of uncertainty in the most important input variables and assess their effect on energy and savings calculations. We characterize levels of uncertainty as "low" (0-5%), "moderate" (5%-15%) or "significant" (>15%). Even these categories, however, are just estimates. Although we have attributed a quantitative description, the actual levels of uncertainty for each variable may be different depending on the country, specific product, and even the year in question. They should be viewed as indicative levels of uncertainty

6.1. Data-Driven Variables

Historical Sales – In many cases, the sales forecast is driven off of current or historical sales using a growth rate, calibrated to long-term diffusion rates. In this case, future sales scale directly with historical sales. When these data are available, the uncertainty on them is generally **low**, but the impact on the final results is **moderate**.

Lifetime – The equipment lifetime impacts sales through replacement rates when sales are forecasted using saturation modeling. Impacts sales only indirectly when sales are forecasted using historical growth rates or are taken from secondary sources, which generally have access to high-quality data. Therefore, while the uncertainty on lifetime is **significant**, the overall impact of lifetime on the sales forecast is **moderate**.

Base Year Efficiency Distribution– In countries and appliance groups with existing standards or labeling programs, the uncertainty on this parameter is **low** because the distribution is close to the minimum, and/or the market shares are known. Where no standards or labels exist, the uncertainty on base year efficiency distribution is **moderate**. Because efficiency directly impacts UEC, the resulting uncertainty in these two cases is **low** or **moderate**, respectively.

Usage – The dependence of UEC on usage varies greatly among end uses. End uses that are highly dependent on usage include lighting, air conditioning, water heating and space heating. For these equipment types, the uncertainty and impact on UEC is **significant**.

6.2. Forecast Parameters

Shipments Growth Rates – In cases where historical sales are trended forward, the assumed growth rate has a direct effect on stock and turnover. The uncertainty and impact of this variable is **significant**.

Population and Household Size – Demographic parameters have a direct effect on sales when a diffusion model is used. These trends are modeled carefully and probably have only **moderate** uncertainty over the forecast period. The overall affect on uncertainty of results is **low**.

GDP Growth Rate – The GDP forecast affects the projection of commercial floor space, appliance diffusion and industrial motor energy. GDP growth rates are assumptions and are associated with a **significant** level uncertainty. The impact of GDP growth on energy forecast is **moderate** to **significant**, depending on the country and appliance group.

Urbanization and Electrification – Like population and economic growth, these parameters affect sales when a diffusion model is used. These trends are modeled carefully and probably have only **moderate** uncertainty over the forecast period. The overall effect on uncertainty of results is **low**.

Efficiency and Product Class Trends – Appliance markets are constantly evolving, with changes in product classes and technology types driven by consumer preferences and technological innovations. In the case of major white goods, these changes can be gradual and incremental, whereas in electronics, for example, changes can be extremely rapid, making anticipation of trends difficult even a few years in the future. The uncertainty of these parameters is therefore **moderate** to **significant**. Obviously, the impact of these changes can be wide ranging and can dramatically impact energy consumption. The overall effect on the results is therefore also **moderate** to **significant**.

Electricity Carbon Factor – Electricity carbon dioxide emissions are calculated as the product of electricity demand and an *electricity carbon factor* taken from IEA base year data forecasted according to trends in the *World Energy Outlook* [71]. The projection of electricity carbon factors is based on expectations of the carbon intensity of new generation capacity. The uncertainty of this projection can be characterized as **moderate**. Since emissions are directly proportional, they can also be characterized as **moderate**.

Field Consumption Variability- Efficiency for many equipment types modeled in BUENAS is estimated according to ratings determined according to standardized test procedures. Differences between rated and actual installed (field) consumption due to variable ambient conditions and use pattern s have long been known to exist and have been recently studied (see for example [78]). The uncertainty from this variability is **moderate**, and has a **moderate** impact on estimates of energy demand and savings.

Rebound Effects – 'Rebound effects' refers to the increase in usage of energy that is a direct impact of increased efficiency. *Macroeconomic* rebound effects refer to the general increase in economic activity due to reductions in consumer energy expenditures. *Direct* rebound effects refer to increases in appliance usage due to a perceived or actual reduction in expenditures as a result of efficiency. Neither effect is included in BUENAS, although there are plans to include them in future versions. Estimates of rebound effects are variable and often controversial, but we characterize them as **moderate**, with a **moderate** impact on savings results.

Variable	Level of Uncertainty	Impact on Results
	Data-Driven Variables	·
Historical Sales	low	moderate
Lifetime	significant	moderate
Base Year Efficiency Distribution	low to moderate	low to moderate
Usage	significant for some	significant for some
	equipment types	equipment types
Field Consumption Variability	moderate	moderate
Rebound Effects	moderate	moderate
	Forecast Parameters	
Shipments Growth Rates	significant	significant
Population and Household Size	moderate	low
GDP Growth Rate	significant	moderate to significant
Urbanization and Electrification	moderate	low
Efficiency and Product Class	moderate to significant	moderate to significant
Trends		
Electricity Carbon Factor	moderate	moderate

Table 9 – Summary of Level of Uncertainty and Impact of Results by Variable

In conclusion, there are significant areas where the accuracy of results produced by BUENAS could be improved through various means, primarily through better data. On the other hand, there will always be uncertainties in forecasting and these are likely to be significant. In fact, overall, the forecast parameters identified in **Table 9** more often have a "significant" effect on the results. This aspect of the modeling should be taken into account when considering opportunities for increasing model precision.